-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbrat_model1.stan
102 lines (87 loc) · 2.58 KB
/
brat_model1.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
data {
int<lower=1> N; // Number of subjects
int<lower=1> T; // Maximum number of trials
int<lower=0> Tsubj[N]; // Number of trials for each subject
int<lower=0> I; // Initial size of the balloon
int<lower=0> pumps[N, T]; // Number of pump
int<lower=0,upper=1> explosion[N, T];
}
parameters {
vector[4] mu_pr;
vector<lower=0>[4] sigma;
vector[N] phi_pr;
vector[N] eta_pr;
vector[N] gam_pr;
vector[N] tau_pr;
}
transformed parameters {
vector<lower=0, upper = 1> [N] phi;
vector<lower=0>[N] eta;
vector<lower=0, upper = 2>[N] gam;
vector<lower=0>[N] tau;
for(i in 1:N) {
phi[i] = Phi_approx(mu_pr[1] + sigma[1] * phi_pr[i]);
eta[i] = exp(mu_pr[2] + sigma[2] * eta_pr[i]);
gam[i] = Phi_approx(mu_pr[3] + sigma[3] * gam_pr[i]) * 2;
tau[i] = exp(mu_pr[4] + sigma[4] * tau_pr[i]);
}
}
model {
mu_pr ~ normal(0, 1);
sigma ~ normal(0, 0.2);
phi_pr ~ normal(0, 1);
eta_pr ~ normal(0, 1);
gam_pr ~ normal(0, 1);
tau_pr ~ normal(0, 1);
for(j in 1:N) {
int n_succ = 0;
int n_pump = 0;
for (k in 1:Tsubj[j]) {
real p_burst;
vector[I] curUtil;
p_burst = 1 - ((phi[j] + eta[j] * n_succ) / (1 + eta[j] * n_pump));
for( l in 1:I) {
curUtil[l] = (1-p_burst)^(I-l)*(I-l)^gam[j];
}
pumps[j,k] ~ categorical_logit(curUtil*tau[j]);
if(explosion[j,k] == 0) {
n_succ += pumps[j,k];
}
n_pump += pumps[j,k];
}
}
}
generated quantities {
real<lower=0, upper=1> mu_phi = Phi_approx(mu_pr[1]);
real<lower=0> mu_eta = exp(mu_pr[2]);
real<lower=0, upper=2> mu_gam = Phi_approx(mu_pr[3]) * 2;
real<lower=0> mu_tau = exp(mu_pr[4]);
// Log-likelihood for model fit
real log_lik[N];
// For posterior predictive check
real y_pred[N, T];
// Set all posterior predictions to 0 (avoids NULL values)
for (j in 1:N)
for (k in 1:T)
y_pred[j, k] = 0;
// Local section to save time and space
for (j in 1:N) {
int n_succ = 0;
int n_pump = 0;
log_lik[j] = 0;
for (k in 1:Tsubj[j]) {
real p_burst; // Belief on a balloon to be burst
vector[I] curUtil;
p_burst = 1 - ((phi[j] + eta[j] * n_succ) / (1 + eta[j] * n_pump));
for( l in 1:I) {
curUtil[l] = (1-p_burst)^(I-l)*(I-l)^gam[j];
}
log_lik[j] += categorical_logit_lpmf( pumps[j,k] | curUtil*tau[j] );
y_pred[j,k] = categorical_rng(softmax(curUtil * tau[j]));
if(explosion[j,k] == 0) {
n_succ += pumps[j,k];
}
n_pump += pumps[j,k];
}
}
}