-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualization.py
51 lines (46 loc) · 1.56 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import matplotlib.pyplot as plt
def imshow(img):
x = img - np.min(img)
x = x / np.max(x)
plt.imshow(np.transpose(x, (1, 2, 0)))
plt.axis('off')
def plot_meis(activations, scores, inputs, filename, sort=True,
num_show=10, show_all=False, plot=False):
# show top5 and bottom5 scores
# show by decreasing activations
if show_all:
num_unit = activations.shape[1]
else:
num_unit = num_show
if len(scores) > 0:
if sort:
ind_sort = np.argsort(scores)
ind_units = np.concatenate([
ind_sort[:num_unit // 2], ind_sort[-num_unit // 2 - 1:]
])
else:
ind_units = np.arange(num_unit)
elif scores == None:
scores = activations.mean(0)
ind_units = np.arange(num_unit)
plt.figure(figsize=((num_show + 1) * 1.1, num_unit * 1.1))
for i in range(num_unit):
ind_unit = ind_units[i]
y = activations[:, ind_unit].copy()
plt.subplot(num_unit, num_show + 1, 1 + i * (num_show + 1))
plt.axis('off')
plt.text(0, 0, 'Unit: %s,\nScore: %.4f,\nMean: %.4f,\nStd: %.4f' % (
ind_unit, scores[ind_unit], y.mean(), y.std()
))
ind_sort = np.argsort(y)[::-1]
for j in range(num_show):
plt.subplot(num_unit, num_show + 1, j + 2 + i * (num_show + 1))
imshow(inputs[ind_sort[j]])
plt.title('%.4f' % y[ind_sort[j]])
plt.tight_layout()
if plot:
plt.show()
else:
plt.savefig(filename)
plt.clf()