-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnnmf.m
executable file
·371 lines (326 loc) · 13 KB
/
nnmf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
function [wbest,hbest,normbest] = nnmf(a,k,varargin)
%NNMF Non-negative matrix factorization.
% [W,H] = NNMF(A,K) factors the N-by-M matrix A into non-negative factors
% W (N-by-K) and H (K-by-M). The result is not an exact factorization,
% but W*H is a lower-rank approximation to the original matrix A. The W
% and H matrices are chosen to minimize the objective function that is
% defined as the root mean squared residual between A and the
% approximation W*H. This is equivalent to
%
% D = norm(A-W*H,'fro')/sqrt(N*M)
%
% The factorization uses an iterative method starting with random initial
% values for W and H. Because the objective function often has local
% minima, repeated factorizations may yield different W and H values.
% Sometimes the algorithm converges to solutions of lower rank than K,
% and this is often an indication that the result is not optimal.
%
% [W,H,D] = NNMF(...) also returns D, the root mean square residual.
%
% [W,H,D] = NNMF(A,K,'PARAM1',val1,'PARAM2',val2,...) specifies one or
% more of the following parameter name/value pairs:
%
% Parameter Value
% 'algorithm' Either 'als' (default) to use an alternating least
% squares algorithm, or 'mult' to use a multiplicative
% update algorithm.
% 'w0' An N-by-K matrix to be used as the initial value for W.
% 'h0' A K-by-M matrix to be used as the initial value for H.
% 'replicates' The number of times to repeat the factorization, using
% new random starting values for W and H, except at the
% first replication if w0 and h0 are given (default 1).
% This tends to be most beneficial with the 'mult'
% algorithm.
% 'options' An options structure as created by the STATSET
% function. NNMF uses the following fields:
%
% 'Display' Level of display output. Choices are 'off'
% (the default), 'final', and 'iter'.
% 'MaxIter' Maximum number of steps allowed. The default
% is 100. Unlike in optimization settings,
% reaching MaxIter is regarded as convergence.
% 'TolFun' Positive number giving the termination tolerance
% for the criterion. The default is 1e-4.
% 'TolX' Positive number giving the convergence threshold
% for relative change in the elements of W and H.
% The default is 1e-4.
% 'UseParallel'
% 'UseSubstreams'
% 'Streams' These fields specify whether to perform multiple
% replicates in parallel, and how to use random
% numbers when generating the starting points for
% the replicates. For information on these fields
% see PARALLELSTATS.
% NOTE: If 'UseParallel' is TRUE and 'UseSubstreams' is FALSE,
% then the length of 'Streams' must equal the number of workers
% used by NNMF. If a parallel pool is already open, this
% will be the size of the parallel pool. If a parallel pool
% is not already open, then MATLAB may try to open a pool for
% you (depending on your installation and preferences).
% To ensure more predictable results, it is best to use
% the PARPOOL command and explicitly create a parallel pool
% prior to invoking NNMF with 'UseParallel' set to TRUE.
%
% Examples:
% % Non-negative rank-2 approximation of the Fisher iris measurements
% load fisheriris
% [w,h] = nnmf(meas,2);
% hLines = gscatter(w(:,1),w(:,2),species);
% hold on; biplot(max(w(:))*h','VarLabels',{'sl' 'sw' 'pl' 'pw'},'positive',true); hold off;
% axis([0 12 0 12]);
% legend(hLines)
%
% % Try a few iterations at several replicates using the
% % multiplicative algorithm, then continue with more iterations
% % from the best of these results using alternating least squares
% x = rand(100,20)*rand(20,50);
% opt = statset('maxiter',5,'display','final');
% [w,h] = nnmf(x,5,'rep',10,'opt',opt,'alg','mult');
% opt = statset('maxiter',1000,'display','final');
% [w,h] = nnmf(x,5,'w0',w,'h0',h,'opt',opt,'alg','als');
%
% See also BIPLOT, PCA, STATSET, PARALLELSTATS.
% Copyright 2007-2016 The MathWorks, Inc.
% Reference:
% M.W. Berry et al. (2007), "Algorithms and Applications for Approximate
% Nonnegative Matrix Factorization," Computational Statistics and Data
% Analysis, vol. 52, no. 1, pp. 155-173.
% The factorization is not uniquely defined. This function normalizes H so
% that its rows have unit length. It orders the columns of W and rows of H
% so that the columns of W have decreasing length.
% Check required arguments
if nargin > 2
[varargin{:}] = convertStringsToChars(varargin{:});
end
narginchk(2,Inf);
[n,m] = size(a);
if ~isscalar(k) || ~isnumeric(k) || k<1 || k~=round(k)
error(message('stats:nnmf:BadK'));
end
% Process optional arguments
pnames = {'algorithm' 'w0' 'h0' 'replicates' 'options'};
dflts = {'als' [] [] 1 [] };
[alg,w0,h0,tries,options] = ...
internal.stats.parseArgs(pnames,dflts,varargin{:});
% Check optional arguments
alg = internal.stats.getParamVal(alg,{'mult' 'als'},'ALGORITHM');
ismult = strncmp('mult',alg,numel(alg));
checkmatrices(a,w0,h0,k);
if ~isscalar(tries) || ~isnumeric(tries) || tries<1 || tries~=round(tries)
error(message('stats:nnmf:BadReplicates'));
end
defaultopt = statset('nnmf');
tolx = statget(options,'TolX',defaultopt,'fast');
tolfun = statget(options,'TolFun',defaultopt,'fast');
maxiter = statget(options,'MaxIter',defaultopt,'fast');
dispopt = statget(options,'Display',defaultopt,'fast');
[~,dispnum] = internal.stats.getParamVal(dispopt, {'off','notify','final','iter'},'Display');
dispnum = dispnum - 1;
[useParallel, RNGscheme, poolsz] = ...
internal.stats.parallel.processParallelAndStreamOptions(options,true);
usePool = useParallel && poolsz>0;
% Special case, if K is full rank we know the answer
if isempty(w0) && isempty(h0)
if k==m
w0 = a;
h0 = eye(k);
elseif k==n
w0 = eye(k);
h0 = a;
end
end
% Define the function that will perform one iteration of the
% loop inside smartFor
loopbody = @loopBody;
% Suppress undesired warnings.
if usePool
% On workers and client
pctRunOnAll internal.stats.parallel.muteParallelStore('rankDeficientMatrix', ...
warning('off','MATLAB:rankDeficientMatrix') );
else
% On client
ws = warning('off','MATLAB:rankDeficientMatrix');
end
% Prepare for in-progress
if dispnum > 1 % 'iter' or 'final'
if usePool
% If we are running on a parallel pool, each worker will generate
% a separate periodic report. Before starting the loop, we
% seed the parallel pool so that each worker will have an
% identifying label (eg, index) for its report.
internal.stats.parallel.distributeToPool( ...
'workerID', num2cell(1:poolsz) );
% Periodic reports behave differently in parallel than they do
% in serial computation (which is the baseline).
% We advise the user of the difference.
warning(message('stats:nnmf:displayParallel2'));
% Leave formatted by \t UI strings untranslated. 8/17/2011
fprintf(' worker\t rep\t iteration\t rms resid\t |delta x|\n' );
else
if useParallel
warning(message('stats:nnmf:displayParallel'));
end
fprintf(' rep\t iteration\t rms resid\t |delta x|\n');
end
end
try
whbest = internal.stats.parallel.smartForReduce(...
tries, loopbody, useParallel, RNGscheme, 'argmin');
catch ME
% Revert warning setting for rankDeficientMatrix to value prior to nnmf.
if usePool
% On workers and on client
pctRunOnAll warning(internal.stats.parallel.statParallelStore('rankDeficientMatrix').state,'MATLAB:rankDeficientMatrix');
else
% On client
warning(ws);
end
rethrow(ME);
end
normbest = whbest{1};
wbest = whbest{3};
hbest = whbest{4};
% whbest{2} contains the iteration chosen for the best factorization,
% but it has no meaning except as a "reproducible" tie-breaker, and
% is not supplied as a return value.
if dispnum > 1 % 'final' or 'iter'
fprintf('%s\n',getString(message('stats:nnmf:FinalRMSResidual',sprintf('%g',normbest))));
end
% Revert warning setting for rankDeficientMatrix to value prior to nnmf.
if usePool
% On workers and on client
pctRunOnAll warning(internal.stats.parallel.statParallelStore('rankDeficientMatrix').state,'MATLAB:rankDeficientMatrix');
else
% On client
warning(ws);
end
if normbest==Inf
error(message('stats:nnmf:NoSolution'))
end
% Put the outputs in a standard form - first normalize h
hlen = sqrt(sum(hbest.^2,2));
if any(hlen==0)
warning(message('stats:nnmf:LowRank', k - sum( hlen==0 ), k));
hlen(hlen==0) = 1;
end
wbest = bsxfun(@times,wbest,hlen');
hbest = bsxfun(@times,hbest,1./hlen);
% Then order by w
[~,idx] = sort(sum(wbest.^2,1),'descend');
wbest = wbest(:,idx);
hbest = hbest(idx,:);
% ---- Nested functions ----
function cellout = loopBody(iter,S)
if isempty(S)
S = RandStream.getGlobalStream;
end
% whtry is a "temporary variable" and hence needs to be
% reinitialized at start of each loop.
whtry = cell(4,1); % whtry{1} = norm of error
% whtry{3} = w
% whtry{4} = h
% Get random starting values if required
if( ~isempty(w0) && iter ==1 )
whtry{3} = w0;
else
whtry{3} = rand(S,n,k);
end
if( ~isempty(h0) && iter ==1 )
whtry{4} = h0;
else
whtry{4} = rand(S,k,m);
end
% Perform a factorization
[whtry{3},whtry{4},whtry{1}] = ...
nnmf1(a,whtry{3},whtry{4},ismult,maxiter,tolfun,tolx,...
dispnum,iter,usePool);
whtry{2} = iter;
cellout = whtry;
end
end % of nnmf
% -------------------
function [w,h,dnorm] = nnmf1(a,w0,h0,ismult,maxiter,tolfun,tolx,...
dispnum,repnum,usePool)
% Single non-negative matrix factorization
nm = numel(a);
sqrteps = sqrt(eps);
% Display progress. For parallel computing, the replicate number will be
% displayed under the worker performing the replicate.
if dispnum>1 % 'final' or 'iter'
if usePool
labindx = internal.stats.parallel.workerGetValue('workerID');
dispfmt = '%8d\t%8d\t%8d\t%14g\t%14g\n';
else
dispfmt = '%7d\t%8d\t%12g\t%12g\n';
end
end
for j=1:maxiter
if ismult
% Multiplicative update formula
numer = w0'*a;
h = max(0,h0 .* (numer ./ ((w0'*w0)*h0 + eps(numer))));
numer = a*h';
w = max(0,w0 .* (numer ./ (w0*(h*h') + eps(numer))));
else
% Alternating least squares
h = max(0, w0\a);
w = max(0, a/h);
end
% Get norm of difference and max change in factors
d = a - w*h;
dnorm = sqrt(sum(sum(d.^2))/nm);
dw = max(max(abs(w-w0) / (sqrteps+max(max(abs(w0))))));
dh = max(max(abs(h-h0) / (sqrteps+max(max(abs(h0))))));
delta = max(dw,dh);
% Check for convergence
if j>1
if delta <= tolx
break;
elseif dnorm0-dnorm <= tolfun*max(1,dnorm0)
break;
elseif j==maxiter
break
end
end
if dispnum>2 % 'iter'
if usePool
fprintf(dispfmt,labindx,repnum,j,dnorm,delta);
else
fprintf(dispfmt,repnum,j,dnorm,delta);
end
end
% Remember previous iteration results
dnorm0 = dnorm;
w0 = w;
h0 = h;
end
if dispnum>1 % 'final' or 'iter'
if usePool
fprintf(dispfmt,labindx,repnum,j,dnorm,delta);
else
fprintf(dispfmt,repnum,j,dnorm,delta);
end
end
end
% ---------------------------
function checkmatrices(a,w,h,k)
% check for non-negative matrices of the proper size
if ~ismatrix(a) || ~isnumeric(a) || ~isreal(a) || any(any(~isfinite(a)))
error(message('stats:nnmf:BadA'))
end
[n,m] = size(a);
if ~isempty(w)
if ~ismatrix(w) || ~isnumeric(w)|| ~isreal(w) || any(any(w<0)) || any(any(~isfinite(w)))
error(message('stats:nnmf:BadWNegativeValues'))
elseif ~isequal(size(w),[n k])
error(message('stats:nnmf:BadWSizeIsWrong', sprintf( '%d', n ), sprintf( '%d', k )));
end
end
if ~isempty(h)
if ~ismatrix(h) || ~isnumeric(h)|| ~isreal(h) || any(any(h<0)) || any(any(~isfinite(h)))
error(message('stats:nnmf:BadHNegativeValues'))
elseif ~isequal(size(h),[k m])
error(message('stats:nnmf:BadHSizeIsWrong', sprintf( '%d', k ), sprintf( '%d', m )));
end
end
end % checkmatrices