-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdqnAgents.py
394 lines (321 loc) · 15 KB
/
dqnAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# Used code from
# DQN implementation by Tejas Kulkarni found at
# https://github.com/mrkulk/deepQN_tensorflow
# Used code from:
# The Pacman AI projects were developed at UC Berkeley found at
# http://ai.berkeley.edu/project_overview.html
import numpy as np
import random
import util
import time
import sys
import os
# Pacman game
from pacman import Directions
from game import Agent
import game
# Replay memory
from collections import deque
# Neural nets
from DQN import *
# only params value can be modified
params = {
# Model backups
'load_file': "model-trcikyClassic_585898_9422", # relative path to the saved model
'save_file': "smallClassic", # name of the model
'save_interval': 100000, # Number of steps between each checkpoint
# Training parameters
'train_start': 5000, # Steps before training starts
'batch_size': 32, # Replay memory batch size
'mem_size': 100000, # Replay memory size
'discount': 0.95, # Discount rate (gamma value)
'lr': .0002, # Learning reate
# Epsilon value (epsilon-greedy)
'eps': 1.0, # Epsilon start value
'eps_final': 0.1, # Epsilon end value
'eps_step': 10000 # Epsilon steps between start and end (linear)
}
class DQNAgent(game.Agent):
def __init__(self, width, height, numTraining=0):
# Load parameters from user-given arguments
self.params = params
self.params['width'] = width # Maze width
self.params['height'] = height # Maze height
self.params['num_training'] = numTraining # Number of games used for training
# create saves and logs directory
if not os.path.exists("saves/DQN/"):
os.makedirs("saves/DQN/")
if not os.path.exists("logs/"):
os.makedirs("logs/")
# get saves directory
if params["load_file"] is not None and not params["load_file"].startswith("saves/DQN/"):
params["load_file"] = "saves/DQN/" + params["load_file"]
# Start Tensorflow session
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
self.qnet = DQN(self.params) # create DQN
# time started
self.general_record_time = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
self.Q_global = [] # max Q-values in the current game
self.cost_disp = 0 # current loss
self.cnt = self.qnet.sess.run(self.qnet.global_step) # number of steps the model has been trained so far
self.local_cnt = 0 # number of total steps the algorithm has run
self.numeps = 0 # current episode
if params["load_file"] is not None:
self.numeps = int(params["load_file"].split("_")[-1])
self.last_score = 0 # Score in the last step
self.s = time.time() # time elapsed since beginning of training
self.last_reward = 0. # Reward obtained in the last step
self.replay_mem = deque() # replay memory used for training
self.terminal = False # True if the game in a terminal state
self.last_score = 0 # Score obtained in the last state
self.current_score = 0 # Score obtained in the current state
self.last_reward = 0. # Reward obtained in the last state
self.ep_rew = 0 # Cumulative reward obtained in the current game
self.last_state = None # Last state
self.current_state = None # Current state
self.last_action = None # Last action
self.won = True # True if the game has been won
self.delay = 0
self.frame = 0
# Select a move according to exploitation / exploration tradeoff
def getMove(self):
# Exploit / Explore
if np.random.rand() >= self.params['eps']:
# Exploit action
self.Q_pred = self.qnet.sess.run(
self.qnet.y,
feed_dict = {self.qnet.x: np.reshape(self.current_state,
(1, self.params['width'], self.params['height'], 6)),
self.qnet.q_t: np.zeros(1),
self.qnet.actions: np.zeros((1, 4)),
self.qnet.terminals: np.zeros(1),
self.qnet.rewards: np.zeros(1)})[0]
self.Q_global.append(max(self.Q_pred))
a_winner = np.argwhere(self.Q_pred == np.amax(self.Q_pred))
if len(a_winner) > 1:
move = self.get_direction(
a_winner[np.random.randint(0, len(a_winner))][0])
else:
move = self.get_direction(
a_winner[0][0])
else:
# Random:
move = self.get_direction(np.random.randint(0, 4))
# Save last_action
self.last_action = self.get_value(move)
return move
# converts direction to value
def get_value(self, direction):
if direction == Directions.NORTH:
return 0.
elif direction == Directions.EAST:
return 1.
elif direction == Directions.SOUTH:
return 2.
else:
return 3.
# converts value to direction
def get_direction(self, value):
if value == 0.:
return Directions.NORTH
elif value == 1.:
return Directions.EAST
elif value == 2.:
return Directions.SOUTH
else:
return Directions.WEST
# make an observation on the reply memory, then use it to train the model on one batch
def observation_step(self, state):
if self.last_action is not None:
# Process current experience state
self.last_state = np.copy(self.current_state)
# get the matrix of the new state
self.current_state = self.getStateMatrices(state)
# Process current experience reward
self.current_score = state.getScore()
# get the reward obtained in the current state
reward = self.current_score - self.last_score
self.last_score = self.current_score
self.last_reward = reward # experimental (don't change the reward)
if reward <= -100:
self.won = False
self.ep_rew += self.last_reward
# Store last experience into memory
experience = (self.last_state, float(self.last_reward), self.last_action, self.current_state, self.terminal)
self.replay_mem.append(experience)
if len(self.replay_mem) > self.params['mem_size']:
self.replay_mem.popleft()
# Save model
if params['save_file']:
if self.local_cnt > self.params['train_start'] and self.local_cnt % self.params['save_interval'] == 0:
self.qnet.save_ckpt('saves/DQN/model-' + params['save_file'] + "_" + str(self.cnt) + '_' + str(self.numeps))
print('Model saved')
# Train
self.train()
# Next
self.local_cnt += 1
self.frame += 1
self.params['eps'] = max(self.params['eps_final'],
1.00 - float(self.cnt) / float(self.params['eps_step']))
if self.numeps >= params['num_training']:
params['eps'] = 0
# Do an observation after each step (this method is called in the game.py file after each step)
def observationFunction(self, state):
self.terminal = False
self.observation_step(state)
return state
# After each game print pacman statistics (this method is called in the game.py file when a game finishes)
def final(self, state):
# Total reward accumulated in an episode
self.ep_rew += self.last_reward
# Do observation
self.terminal = True
self.observation_step(state)
# Print stats
log_file = open('./logs/'+str(self.general_record_time)+'-l-'+str(self.params['width'])+'-m-' +
str(self.params['height'])+'-x-'+str(self.params['num_training'])+'.log', 'a')
game_log = ("# %4d | steps: %5d | steps_t: %5d | t: %4f | r: %12f | e: %10f | Q: %10f | won: %r \n" %
(self.numeps, self.local_cnt, self.cnt, time.time()-self.s, self.ep_rew, self.params['eps'],
max(self.Q_global, default=float('nan')), self.won))
log_file.write(game_log)
sys.stdout.write(game_log)
sys.stdout.flush()
# Train the model sampling a batch from the replay memory
def train(self):
# The train process starts only if has passed a certain number of steps in order to fill the replay memory
if self.local_cnt > self.params['train_start']:
batch = random.sample(self.replay_mem, self.params['batch_size'])
batch_s = [] # States (s)
batch_r = [] # Rewards (r)
batch_a = [] # Actions (a)
batch_n = [] # Next states (s')
batch_t = [] # Terminal state (t)
for i in batch:
batch_s.append(i[0])
batch_r.append(i[1])
batch_a.append(i[2])
batch_n.append(i[3])
batch_t.append(i[4])
batch_s = np.array(batch_s)
batch_r = np.array(batch_r)
batch_a = self.get_onehot(np.array(batch_a))
batch_n = np.array(batch_n)
batch_t = np.array(batch_t)
# return global step (number of training iterations on batches) and loss
self.cnt, self.cost_disp = self.qnet.train(batch_s, batch_a, batch_t, batch_n, batch_r)
# one-hot encode action
def get_onehot(self, actions):
""" Create list of vectors with 1 values at index of action in list """
actions_onehot = np.zeros((self.params['batch_size'], 4))
for i in range(len(actions)):
actions_onehot[i][int(actions[i])] = 1
return actions_onehot
def getStateMatrices(self, state):
""" Return wall, ghosts, food, capsules matrices """
def getWallMatrix(state):
""" Return matrix with wall coordinates set to 1 """
width, height = state.data.layout.width, state.data.layout.height
grid = state.data.layout.walls
matrix = np.zeros((height, width), dtype=np.int8)
for i in range(grid.height):
for j in range(grid.width):
# Put cell vertically reversed in matrix
cell = 1 if grid[j][i] else 0
matrix[-1-i][j] = cell
return matrix
def getPacmanMatrix(state):
""" Return matrix with pacman coordinates set to 1 """
width, height = state.data.layout.width, state.data.layout.height
matrix = np.zeros((height, width), dtype=np.int8)
for agentState in state.data.agentStates:
if agentState.isPacman:
pos = agentState.configuration.getPosition()
cell = 1
matrix[-1-int(pos[1])][int(pos[0])] = cell
return matrix
def getGhostMatrix(state):
""" Return matrix with ghost coordinates set to 1 """
width, height = state.data.layout.width, state.data.layout.height
matrix = np.zeros((height, width), dtype=np.int8)
for agentState in state.data.agentStates:
if not agentState.isPacman:
if not agentState.scaredTimer > 0:
pos = agentState.configuration.getPosition()
cell = 1
matrix[-1-int(pos[1])][int(pos[0])] = cell
return matrix
def getScaredGhostMatrix(state):
""" Return matrix with ghost coordinates set to 1 """
width, height = state.data.layout.width, state.data.layout.height
matrix = np.zeros((height, width), dtype=np.int8)
for agentState in state.data.agentStates:
if not agentState.isPacman:
if agentState.scaredTimer > 0:
pos = agentState.configuration.getPosition()
cell = 1
matrix[-1-int(pos[1])][int(pos[0])] = cell
return matrix
def getFoodMatrix(state):
""" Return matrix with food coordinates set to 1 """
width, height = state.data.layout.width, state.data.layout.height
grid = state.data.food
matrix = np.zeros((height, width), dtype=np.int8)
for i in range(grid.height):
for j in range(grid.width):
# Put cell vertically reversed in matrix
cell = 1 if grid[j][i] else 0
matrix[-1-i][j] = cell
return matrix
def getCapsulesMatrix(state):
""" Return matrix with capsule coordinates set to 1 """
width, height = state.data.layout.width, state.data.layout.height
capsules = state.data.layout.capsules
matrix = np.zeros((height, width), dtype=np.int8)
for i in capsules:
# Insert capsule cells vertically reversed into matrix
matrix[-1-i[1], i[0]] = 1
return matrix
# Create observation matrix as a combination of
# wall, pacman, ghost, food and capsule matrices
# width, height = state.data.layout.width, state.data.layout.height
width, height = self.params['width'], self.params['height']
observation = np.zeros((6, height, width))
observation[0] = getWallMatrix(state)
observation[1] = getPacmanMatrix(state)
observation[2] = getGhostMatrix(state)
observation[3] = getScaredGhostMatrix(state)
observation[4] = getFoodMatrix(state)
observation[5] = getCapsulesMatrix(state)
observation = np.swapaxes(observation, 0, 2)
return observation
# Init the initial state of the agent (this method is called in the game.py file when a game starts)
def registerInitialState(self, state): # inspects the starting state
# Reset reward
self.last_score = 0
self.current_score = 0
self.last_reward = 0.
self.ep_rew = 0
# Reset state
self.last_state = None
self.current_state = self.getStateMatrices(state)
# Reset actions
self.last_action = None
# Reset vars
self.terminal = None
self.won = True
self.Q_global = []
self.delay = 0
# Next
self.frame = 0
self.numeps += 1
if self.numeps >= params['num_training']:
params['eps'] = 0
# Returns an action from the agent (this method is called in the game.py file when the agent has to select an action)
def getAction(self, state):
move = self.getMove()
# Stop moving when not legal
legal = state.getLegalActions(0)
if move not in legal:
move = random.choice(legal)
return move