-
Notifications
You must be signed in to change notification settings - Fork 5
/
pacmanAgents.py
63 lines (52 loc) · 2.18 KB
/
pacmanAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# pacmanAgents.py
# ---------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from pacman import Directions
from game import Agent
import random
import game
import util
class LeftTurnAgent(game.Agent):
"An agent that turns left at every opportunity"
def getAction(self, state):
legal = state.getLegalPacmanActions()
current = state.getPacmanState().configuration.direction
if current == Directions.STOP:
current = Directions.NORTH
left = Directions.LEFT[current]
if left in legal:
return left
if current in legal:
return current
if Directions.RIGHT[current] in legal:
return Directions.RIGHT[current]
if Directions.LEFT[left] in legal:
return Directions.LEFT[left]
return Directions.STOP
class GreedyAgent(Agent):
def __init__(self, evalFn="scoreEvaluation"):
self.evaluationFunction = util.lookup(evalFn, globals())
assert self.evaluationFunction != None
def getAction(self, state):
# Generate candidate actions
legal = state.getLegalPacmanActions()
if Directions.STOP in legal:
legal.remove(Directions.STOP)
successors = [(state.generateSuccessor(0, action), action)
for action in legal]
scored = [(self.evaluationFunction(state), action)
for state, action in successors]
bestScore = max(scored)[0]
bestActions = [pair[1] for pair in scored if pair[0] == bestScore]
return random.choice(bestActions)
def scoreEvaluation(state):
return state.getScore()