-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
280 lines (242 loc) · 11.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from torch import nn
import torch
from clip.simple_tokenizer import SimpleTokenizer
from clip import tokenize, load
import clip
_tokenizer = SimpleTokenizer()
ARCHITECTURE = "RN50"
class TextEncoder(nn.Module):
def __init__(self, clip_model):
super().__init__()
self.transformer = clip_model.transformer
self.positional_embedding = clip_model.positional_embedding
self.ln_final = clip_model.ln_final
self.text_projection = clip_model.text_projection
def forward(self, prompts, tokenized_prompts):
x = prompts + self.positional_embedding
x = x.permute(1, 0, 2) # [batch_size, n_ctx, transformer.width] -> [n_ctx, batch_size, transformer.width]
x = self.transformer(x)
x = x.permute(1, 0, 2) # [n_ctx, batch_size, transformer.width] -> [batch_size, n_ctx, transformer.width]
x = self.ln_final(x)
# Take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
return x
class PromptLearner(nn.Module):
def __init__(self, clip_model, classnames, batch_size=None, n_ctx=16, ctx_init=None, ctx_position='end', learned_cls=False):
super().__init__()
n_cls = len(classnames)
self.learned_cls = learned_cls
dtype = clip_model.dtype
self.dtype = dtype
self.device = clip_model.visual.conv1.weight.device
ctx_dim = clip_model.ln_final.weight.shape[0]
self.ctx_dim = ctx_dim
self.batch_size = batch_size
if ctx_init:
# use given words to initialize context vectors
print("Initializing the contect with given words: [{}]".format(ctx_init))
ctx_init = ctx_init.replace("_", " ")
if '[CLS]' in ctx_init:
ctx_list = ctx_init.split(" ")
split_idx = ctx_list.index("[CLS]")
ctx_init = ctx_init.replace("[CLS] ", "")
ctx_position = "middle"
else:
split_idx = None
self.split_idx = split_idx
n_ctx = len(ctx_init.split(" "))
prompt = tokenize(ctx_init).to(self.device)
with torch.no_grad():
embedding = clip_model.token_embedding(prompt).type(dtype)
ctx_vectors = embedding[0, 1 : 1 + n_ctx, :]
prompt_prefix = ctx_init
else:
print("Random initialization: initializing a generic context")
ctx_vectors = torch.empty(n_ctx, ctx_dim, dtype=dtype)
nn.init.normal_(ctx_vectors, std=0.02)
prompt_prefix = " ".join(["X"] * n_ctx)
self.prompt_prefix = prompt_prefix
print(f'Initial context: "{prompt_prefix}"')
print(f"Number of context words (tokens): {n_ctx}")
# batch-wise prompt tuning for test-time adaptation
if self.batch_size is not None:
ctx_vectors = ctx_vectors.repeat(batch_size, 1, 1) #(N, L, D)
self.ctx_init_state = ctx_vectors.detach().clone()
self.ctx = nn.Parameter(ctx_vectors) # to be optimized
if not self.learned_cls:
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts = [prompt_prefix + " " + name + "." for name in classnames]
else:
print("Random initialization: initializing a learnable class token")
cls_vectors = torch.empty(n_cls, 1, ctx_dim, dtype=dtype) # assume each learnable cls_token is only 1 word
nn.init.normal_(cls_vectors, std=0.02)
cls_token = "X"
name_lens = [1 for _ in classnames]
prompts = [prompt_prefix + " " + cls_token + "." for _ in classnames]
self.cls_init_state = cls_vectors.detach().clone()
self.cls = nn.Parameter(cls_vectors) # to be optimized
tokenized_prompts = torch.cat([tokenize(p) for p in prompts]).to(self.device)
with torch.no_grad():
embedding = clip_model.token_embedding(tokenized_prompts).type(dtype)
# These token vectors will be saved when in save_model(),
# but they should be ignored in load_model() as we want to use
# those computed using the current class names
self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS
if self.learned_cls:
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx + 1:, :]) # ..., EOS
else:
self.register_buffer("token_suffix", embedding[:, 1 + n_ctx :, :]) # CLS, EOS
self.ctx_init = ctx_init
self.tokenized_prompts = tokenized_prompts # torch.Tensor
self.name_lens = name_lens
self.class_token_position = ctx_position
self.n_cls = n_cls
self.n_ctx = n_ctx
self.classnames = classnames
def reset(self):
ctx_vectors = self.ctx_init_state
self.ctx.copy_(ctx_vectors) # to be optimized
if self.learned_cls:
cls_vectors = self.cls_init_state
self.cls.copy_(cls_vectors)
def reset_classnames(self, classnames):
self.n_cls = len(classnames)
if not self.learned_cls:
classnames = [name.replace("_", " ") for name in classnames]
name_lens = [len(_tokenizer.encode(name)) for name in classnames]
prompts = [self.prompt_prefix + " " + name + "." for name in classnames]
else:
cls_vectors = torch.empty(self.n_cls, 1, self.ctx_dim, dtype=self.dtype) # assume each learnable cls_token is only 1 word
nn.init.normal_(cls_vectors, std=0.02)
cls_token = "X"
name_lens = [1 for _ in classnames]
prompts = [self.prompt_prefix + " " + cls_token + "." for _ in classnames]
# TODO: re-init the cls parameters
# self.cls = nn.Parameter(cls_vectors) # to be optimized
self.cls_init_state = cls_vectors.detach().clone()
tokenized_prompts = torch.cat([tokenize(p) for p in prompts]).to(self.device)
clip, _, _= load(ARCHITECTURE)
with torch.no_grad():
embedding = clip.token_embedding(tokenized_prompts).type(self.dtype)
self.token_prefix = embedding[:, :1, :]
self.token_suffix = embedding[:, 1 + self.n_ctx :, :] # CLS, EOS
self.name_lens = name_lens
self.tokenized_prompts = tokenized_prompts
self.classnames = classnames
def forward(self, init=None):
# the init will be used when computing CLIP directional loss
if init is not None:
ctx = init
else:
ctx = self.ctx
if ctx.dim() == 2:
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1)
elif not ctx.size()[0] == self.n_cls:
ctx = ctx.unsqueeze(1).expand(-1, self.n_cls, -1, -1)
prefix = self.token_prefix
suffix = self.token_suffix
if self.batch_size is not None:
# This way only works for single-gpu setting (could pass batch size as an argument for forward())
prefix = prefix.repeat(self.batch_size, 1, 1, 1)
suffix = suffix.repeat(self.batch_size, 1, 1, 1)
if self.learned_cls:
assert self.class_token_position == "end"
if self.class_token_position == "end":
if self.learned_cls:
cls = self.cls
prompts = torch.cat(
[
prefix, # (n_cls, 1, dim)
ctx, # (n_cls, n_ctx, dim)
cls, # (n_cls, 1, dim)
suffix, # (n_cls, *, dim)
],
dim=-2,
)
else:
prompts = torch.cat(
[
prefix, # (n_cls, 1, dim)
ctx, # (n_cls, n_ctx, dim)
suffix, # (n_cls, *, dim)
],
dim=-2,
)
elif self.class_token_position == "middle":
# TODO: to work with a batch of prompts
if self.split_idx is not None:
half_n_ctx = self.split_idx # split the ctx at the position of [CLS] in `ctx_init`
else:
half_n_ctx = self.n_ctx // 2
prompts = []
for i in range(self.n_cls):
name_len = self.name_lens[i]
prefix_i = prefix[i : i + 1, :, :]
class_i = suffix[i : i + 1, :name_len, :]
suffix_i = suffix[i : i + 1, name_len:, :]
ctx_i_half1 = ctx[i : i + 1, :half_n_ctx, :]
ctx_i_half2 = ctx[i : i + 1, half_n_ctx:, :]
prompt = torch.cat(
[
prefix_i, # (1, 1, dim)
ctx_i_half1, # (1, n_ctx//2, dim)
class_i, # (1, name_len, dim)
ctx_i_half2, # (1, n_ctx//2, dim)
suffix_i, # (1, *, dim)
],
dim=1,
)
prompts.append(prompt)
prompts = torch.cat(prompts, dim=0)
elif self.class_token_position == "front":
prompts = []
for i in range(self.n_cls):
name_len = self.name_lens[i]
prefix_i = prefix[i : i + 1, :, :]
class_i = suffix[i : i + 1, :name_len, :]
suffix_i = suffix[i : i + 1, name_len:, :]
ctx_i = ctx[i : i + 1, :, :]
prompt = torch.cat(
[
prefix_i, # (1, 1, dim)
class_i, # (1, name_len, dim)
ctx_i, # (1, n_ctx, dim)
suffix_i, # (1, *, dim)
],
dim=1,
)
prompts.append(prompt)
prompts = torch.cat(prompts, dim=0)
else:
raise ValueError
return prompts
class OurCLIP(nn.Module):
def __init__(self, classnames, n_ctx, ctx_init, class_token_position="end"):
super().__init__()
clip_model, _, _ = clip.load("RN50")
# clip_model = clip_model.cpu()
clip_model = clip_model.float()
self.prompt_learner = PromptLearner(clip_model, classnames, n_ctx=n_ctx, ctx_init=ctx_init, ctx_position=class_token_position)
self.tokenized_prompts = self.prompt_learner.tokenized_prompts
self.image_encoder = clip_model.visual
self.text_encoder = TextEncoder(clip_model)
self.logit_scale = clip_model.logit_scale
@property
def dtype(self):
return self.image_encoder.conv1.weight.dtype
def forward(self, image):
with torch.no_grad():
image_features = self.image_encoder(image.type(self.dtype))
prompts = self.prompt_learner()
tokenized_prompts = self.prompt_learner.tokenized_prompts
text_features = self.text_encoder(prompts, tokenized_prompts)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
logit_scale = self.logit_scale.exp()
logits = logit_scale * image_features @ text_features.t()
return logits
def reset_classnames(self, classnames):
self.prompt_learner.reset_classnames(classnames)
def reset(self):
self.prompt_learner.reset()