-
Machine Learning cheatsheets for Stanford's CS 229 (Afshine Amidi and Shervine Amidi )
https://github.com/afshinea/stanford-cs-229-machine-learning
-
Probability (wzchen)
https://github.com/wzchen/probability_cheatsheet/raw/master/probability_cheatsheet.pdf
-
Jupyter (Datacamp)
https://datacamp-community-prod.s3.amazonaws.com/48093c40-5303-45f4-bbf9-0c96c0133c40
-
Numpy (Datacamp)
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf
-
Scikit-learn (Datacamp) https://datacamp-community-prod.s3.amazonaws.com/5433fa18-9f43-44cc-b228-74672efcd116
-
Scikit-learn
-
Matplotlib (Datacamp)
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf
-
Seaborn (Datacamp)
https://datacamp-community-prod.s3.amazonaws.com/f9f06e72-519a-4722-9912-b5de742dbac4
-
Conjugate Bayesian analysis of the Gaussian distribution
Model Selection (Andrew NG, https://www.coursera.org/learn/machine-learning)
-
Diagnosing Bias Vs Variance
-
Model Selection And Train Validation Test Sets
-
Visual explanations
-
Gaussian processes for regression demo (Toma Peltola)
-
Seven Myths in Machine Learning Research arxiv
https://crazyoscarchang.github.io/2019/02/16/seven-myths-in-machine-learning-research/
-
Bayesian Methods for Hackers. An introduction to Bayesian methods + probabilistic programming in Python
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers