diff --git a/R/utils.R b/R/utils.R index 92ad0f6e..55f78bb8 100644 --- a/R/utils.R +++ b/R/utils.R @@ -88,59 +88,28 @@ show_flair_cache <- function() { } } -#' -#' #' @title Create or Use Python environment for Flair -#' #' -#' #' @description -#' #' This function checks whether the Flair Python library is installed in the -#' #' current Python environment. If it is not, it attempts to install it either -#' #' in the current conda environment or creates a new one. -#' #' -#' #' @param env The name of the conda environment to be used or -#' #' created (default is "r-reticulate"). -#' #' -#' #' @return Nothing is returned. The function primarily ensures that the Python -#' #' library Flair is installed and available. -#' #' @export -#' #' @importFrom reticulate import py_config use_condaenv -#' #' @importFrom rstudioapi restartSession -#' create_flair_env <- function(env = "r-reticulate") { -#' # check if flair is already installed in the current Python environment -#' if (reticulate::py_module_available("flair")) { -#' message("Environment creation stopped.", "\n", "Flair is already installed in ", reticulate::py_config()$python) -#' message(sprintf("Using Flair: %-48s", reticulate::import("flair")$`__version__`)) -#' return(invisible(NULL)) -#' } -#' paths <- reticulate::conda_list() -#' env_path <- paths[grep("envs/", paths$python), "python"][1] -#' if (grepl("envs/", env_path)) { -#' message("you already created:", length(paths[grep("envs/", paths$python), "python"])) -#' message("you can run use_condaenv(",as.character(env_path),") to activate the enviroment in your R." ) -#' reticulate::use_condaenv(env) -#' } else { -#' # No conda environment found or active, so create one -#' reticulate::conda_create(env) -#' message("No conda environment found. Creating a new environment named '", env, "'. ", "After restarting the R session, please run create_flair_env() again.") -#' rstudioapi::restartSession() -#' } -#' } -#' - #' @title Check the Device for Accelerating PyTorch #' #' @description This function verifies if the specified device is available for PyTorch. #' If CUDA is not available, a message is shown. Additionally, if the system -#' is running on a Mac M1, MPS will be used instead of CUDA. +#' is running on a Mac M1, MPS will be used instead of CUDA. Checks if the specified device is compatible with the current system's +#' hardware and operating system configuration, particularly for Mac systems +#' with Apple M1/M2 silicon using Metal Performance Shaders (MPS). +#' +#' @details +#' If MPS is available and the system meets the requirements, a device of type +#' MPS will be returned. Otherwise, a CPU device will be used. The requirements +#' for using MPS are as follows:\\cr +#' - Mac computers with Apple silicon or AMD GPUs\\cr +#' - macOS 12.3 or later\\cr +#' - Python 3.7 or later\\cr +#' - Xcode command-line tools installed (`xcode-select --install`)\\cr +#' More information at: \url{https://developer.apple.com/metal/pytorch/}. +#' +#' @param device A character string specifying the device type. #' -#' @note Flair NLP operates under the [PyTorch](https://pytorch.org) framework. -#' As such, we can use the `$to` method to set the device for the Flair Python -#' library. `flair_device("cpu")` allows you to select whether to use the CPU, -#' CUDA devices (like cuda:0, cuda:1, cuda:2), or specific MPS devices on Mac -#' (such as mps:0, mps:1, mps:2). For information on Accelerated PyTorch -#' training on Mac, please refer to https://developer.apple.com/metal/pytorch/. -#' For more about CUDA, please visit: https://developer.nvidia.com/cuda-zone. +#' @return A PyTorch device object. #' -#' @param device Character. The device to be set for PyTorch. #' @importFrom reticulate import #' @keywords internal check_device <- function(device) { diff --git a/_pkgdown.yml b/_pkgdown.yml index ebfdf764..44d42ec5 100644 --- a/_pkgdown.yml +++ b/_pkgdown.yml @@ -91,7 +91,6 @@ reference: - map_entities - embeddings_to_matrix - clear_flair_cache - - create_flair_env - show_flair_cache diff --git a/man/check_device.Rd b/man/check_device.Rd index 53e1b0e4..88421257 100644 --- a/man/check_device.Rd +++ b/man/check_device.Rd @@ -7,57 +7,26 @@ check_device(device) } \arguments{ -\item{device}{Character. The device to be set for PyTorch.} +\item{device}{A character string specifying the device type.} +} +\value{ +A PyTorch device object. } \description{ This function verifies if the specified device is available for PyTorch. If CUDA is not available, a message is shown. Additionally, if the system -is running on a Mac M1, MPS will be used instead of CUDA. +is running on a Mac M1, MPS will be used instead of CUDA. Checks if the specified device is compatible with the current system's +hardware and operating system configuration, particularly for Mac systems +with Apple M1/M2 silicon using Metal Performance Shaders (MPS). } \details{ -#' @title Create or Use Python environment for Flair -#' -#' @description -#' This function checks whether the Flair Python library is installed in the -#' current Python environment. If it is not, it attempts to install it either -#' in the current conda environment or creates a new one. -#' -#' @param env The name of the conda environment to be used or -#' created (default is "r-reticulate"). -#' -#' @return Nothing is returned. The function primarily ensures that the Python -#' library Flair is installed and available. -#' @export -#' @importFrom reticulate import py_config use_condaenv -#' @importFrom rstudioapi restartSession -create_flair_env <- function(env = "r-reticulate") { - # check if flair is already installed in the current Python environment - if (reticulate::py_module_available("flair")) { - message("Environment creation stopped.", "\n", "Flair is already installed in ", reticulate::py_config()$python) - message(sprintf("Using Flair: %-48s", reticulate::import("flair")$`__version__`)) - return(invisible(NULL)) - } - paths <- reticulate::conda_list() - env_path <- paths[grep("envs/", paths$python), "python"][1] - if (grepl("envs/", env_path)) { - message("you already created:", length(paths[grep("envs/", paths$python), "python"])) - message("you can run use_condaenv(",as.character(env_path),") to activate the enviroment in your R." ) - reticulate::use_condaenv(env) - } else { - # No conda environment found or active, so create one - reticulate::conda_create(env) - message("No conda environment found. Creating a new environment named '", env, "'. ", "After restarting the R session, please run create_flair_env() again.") - rstudioapi::restartSession() - } -} -} -\note{ -Flair NLP operates under the [PyTorch](https://pytorch.org) framework. -As such, we can use the `$to` method to set the device for the Flair Python -library. `flair_device("cpu")` allows you to select whether to use the CPU, -CUDA devices (like cuda:0, cuda:1, cuda:2), or specific MPS devices on Mac -(such as mps:0, mps:1, mps:2). For information on Accelerated PyTorch -training on Mac, please refer to https://developer.apple.com/metal/pytorch/. -For more about CUDA, please visit: https://developer.nvidia.com/cuda-zone. +If MPS is available and the system meets the requirements, a device of type +MPS will be returned. Otherwise, a CPU device will be used. The requirements +for using MPS are as follows:\\cr +- Mac computers with Apple silicon or AMD GPUs\\cr +- macOS 12.3 or later\\cr +- Python 3.7 or later\\cr +- Xcode command-line tools installed (`xcode-select --install`)\\cr +More information at: \url{https://developer.apple.com/metal/pytorch/}. } \keyword{internal}