forked from HiKapok/RON_Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdraw_toolbox.py
102 lines (81 loc) · 3.75 KB
/
draw_toolbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import cv2
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib.cm as mpcm
from datasets import pascalvoc_common
def gain_translate_table():
label2name_table = {}
for class_name, labels_pair in pascalvoc_common.VOC_LABELS.items():
label2name_table[labels_pair[0]] = class_name
return label2name_table
label2name_table = gain_translate_table()
def colors_subselect(colors, num_classes=21):
dt = len(colors) // num_classes
sub_colors = []
for i in range(num_classes):
color = colors[i*dt]
if isinstance(color[0], float):
sub_colors.append([int(c * 255) for c in color])
else:
sub_colors.append([c for c in color])
return sub_colors
colors = colors_subselect(mpcm.plasma.colors, num_classes=21)
colors_tableau = [(255, 255, 255), (31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),
(44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),
(148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
(227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]
def draw_lines(img, lines, color=[255, 0, 0], thickness=2):
"""Draw a collection of lines on an image.
"""
for line in lines:
for x1, y1, x2, y2 in line:
cv2.line(img, (x1, y1), (x2, y2), color, thickness)
return img
def draw_rectangle(img, p1, p2, color=[255, 0, 0], thickness=2):
cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
return img
def draw_bbox(img, bbox, shape, label, color=[255, 0, 0], thickness=2):
p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
p1 = (p1[0]+15, p1[1])
cv2.putText(img, str(label), p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.5, color, 1)
return img
# def bboxes_draw_on_img(img, classes, scores, bboxes, thickness=2):
# shape = img.shape
# for i in range(bboxes.shape[0]):
# bbox = bboxes[i]
# color = colors_tableau[classes[i]]
# # Draw bounding box...
# p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
# p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
# cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
# # Draw text...
# s = '%s|%.3f' % (label2name_table[classes[i]], scores[i])
# p1 = (p1[0]-6, p1[1])
# cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.5, color, 1)
# return img
def bboxes_draw_on_img(img, classes, scores, bboxes, thickness=2):
shape = img.shape
scale = 0.4
text_thickness = 1
line_type = 8
for i in range(bboxes.shape[0]):
if classes[i] < 1: continue
bbox = bboxes[i]
color = colors_tableau[classes[i]]
# Draw bounding box...
p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
if (p2[0] - p1[0] < 1) or (p2[1] - p1[1] < 1):
continue
cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
# Draw text...
s = '%s/%.1f%%' % (label2name_table[classes[i]], scores[i]*100)
# text_size is (width, height)
text_size, baseline = cv2.getTextSize(s, cv2.FONT_HERSHEY_SIMPLEX, scale, text_thickness)
p1 = (p1[0] - text_size[1], p1[1])
cv2.rectangle(img, (p1[1] - thickness//2, p1[0] - thickness - baseline), (p1[1] + text_size[0], p1[0] + text_size[1]), color, -1)
cv2.putText(img, s, (p1[1], p1[0] + baseline), cv2.FONT_HERSHEY_SIMPLEX, scale, (255,255,255), text_thickness, line_type)
return img