forked from HiKapok/RON_Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_ssd_network.py
347 lines (306 loc) · 15.6 KB
/
eval_ssd_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generic evaluation script that evaluates a SSD model
on a given dataset."""
import math
import sys
import six
import time
import numpy as np
import tensorflow as tf
import tf_extended as tfe
import tf_utils
from tensorflow.python.framework import ops
from datasets import dataset_factory
from nets import nets_factory
from preprocessing import preprocessing_factory
slim = tf.contrib.slim
# =========================================================================== #
# Some default EVAL parameters
# =========================================================================== #
# List of recalls values at which precision is evaluated.
LIST_RECALLS = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85,
0.90, 0.95, 0.96, 0.97, 0.98, 0.99]
DATA_FORMAT = 'NHWC'
# =========================================================================== #
# SSD evaluation Flags.
# =========================================================================== #
tf.app.flags.DEFINE_float(
'select_threshold', 0.01, 'Selection threshold.')
tf.app.flags.DEFINE_integer(
'select_top_k', 400, 'Select top-k detected bounding boxes.')
tf.app.flags.DEFINE_integer(
'keep_top_k', 200, 'Keep top-k detected objects.')
tf.app.flags.DEFINE_float(
'nms_threshold', 0.45, 'Non-Maximum Selection threshold.')
tf.app.flags.DEFINE_float(
'matching_threshold', 0.5, 'Matching threshold with groundtruth objects.')
tf.app.flags.DEFINE_integer(
'eval_resize', 4, 'Image resizing: None / CENTRAL_CROP / PAD_AND_RESIZE / WARP_RESIZE.')
tf.app.flags.DEFINE_integer(
'eval_image_size', None, 'Eval image size.')
tf.app.flags.DEFINE_boolean(
'remove_difficult', True, 'Remove difficult objects from evaluation.')
# =========================================================================== #
# Main evaluation flags.
# =========================================================================== #
tf.app.flags.DEFINE_integer(
'num_classes', 21, 'Number of classes to use in the dataset.')
tf.app.flags.DEFINE_integer(
'batch_size', 1, 'The number of samples in each batch.')
tf.app.flags.DEFINE_integer(
'max_num_batches', None,
'Max number of batches to evaluate by default use all.')
tf.app.flags.DEFINE_string(
'master', '', 'The address of the TensorFlow master to use.')
tf.app.flags.DEFINE_string(
'checkpoint_path', '/tmp/tfmodel/',
'The directory where the model was written to or an absolute path to a '
'checkpoint file.')
tf.app.flags.DEFINE_string(
'eval_dir', '/tmp/tfmodel/', 'Directory where the results are saved to.')
tf.app.flags.DEFINE_integer(
'num_preprocessing_threads', 4,
'The number of threads used to create the batches.')
tf.app.flags.DEFINE_string(
'dataset_name', 'imagenet', 'The name of the dataset to load.')
tf.app.flags.DEFINE_string(
'dataset_split_name', 'test', 'The name of the train/test split.')
tf.app.flags.DEFINE_string(
'dataset_dir', None, 'The directory where the dataset files are stored.')
tf.app.flags.DEFINE_string(
'model_name', 'inception_v3', 'The name of the architecture to evaluate.')
tf.app.flags.DEFINE_string(
'preprocessing_name', None, 'The name of the preprocessing to use. If left '
'as `None`, then the model_name flag is used.')
tf.app.flags.DEFINE_float(
'moving_average_decay', None,
'The decay to use for the moving average.'
'If left as None, then moving averages are not used.')
tf.app.flags.DEFINE_float(
'gpu_memory_fraction', 0.1, 'GPU memory fraction to use.')
tf.app.flags.DEFINE_boolean(
'wait_for_checkpoints', False, 'Wait for new checkpoints in the eval loop.')
FLAGS = tf.app.flags.FLAGS
def main(_):
if not FLAGS.dataset_dir:
raise ValueError('You must supply the dataset directory with --dataset_dir')
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
tf_global_step = slim.get_or_create_global_step()
# =================================================================== #
# Dataset + SSD model + Pre-processing
# =================================================================== #
dataset = dataset_factory.get_dataset(
FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)
# Get the SSD network and its anchors.
ssd_class = nets_factory.get_network(FLAGS.model_name)
ssd_params = ssd_class.default_params._replace(num_classes=FLAGS.num_classes)
ssd_net = ssd_class(ssd_params)
# Evaluation shape and associated anchors: eval_image_size
ssd_shape = ssd_net.params.img_shape
ssd_anchors = ssd_net.anchors(ssd_shape)
# Select the preprocessing function.
preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
preprocessing_name, is_training=False)
tf_utils.print_configuration(FLAGS.__flags, ssd_params,
dataset.data_sources, FLAGS.eval_dir)
# =================================================================== #
# Create a dataset provider and batches.
# =================================================================== #
with tf.device('/cpu:0'):
with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
common_queue_capacity=2 * FLAGS.batch_size,
common_queue_min=FLAGS.batch_size,
shuffle=False)
# Get for SSD network: image, labels, bboxes.
[image, shape, glabels, gbboxes] = provider.get(['image', 'shape',
'object/label',
'object/bbox'])
if FLAGS.remove_difficult:
[gdifficults] = provider.get(['object/difficult'])
else:
gdifficults = tf.zeros(tf.shape(glabels), dtype=tf.int64)
# Pre-processing image, labels and bboxes.
image, glabels, gbboxes, gbbox_img = \
image_preprocessing_fn(image, glabels, gbboxes,
out_shape=ssd_shape,
data_format=DATA_FORMAT,
resize=FLAGS.eval_resize,
difficults=None)
# Encode groundtruth labels and bboxes.
gclasses, glocalisations, gscores = \
ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
batch_shape = [1] * 5 + [len(ssd_anchors)] * 3
# Evaluation batch.
r = tf.train.batch(
tf_utils.reshape_list([image, glabels, gbboxes, gdifficults, gbbox_img,
gclasses, glocalisations, gscores]),
batch_size=FLAGS.batch_size,
num_threads=FLAGS.num_preprocessing_threads,
capacity=5 * FLAGS.batch_size,
dynamic_pad=True)
(b_image, b_glabels, b_gbboxes, b_gdifficults, b_gbbox_img, b_gclasses,
b_glocalisations, b_gscores) = tf_utils.reshape_list(r, batch_shape)
# =================================================================== #
# SSD Network + Ouputs decoding.
# =================================================================== #
dict_metrics = {}
arg_scope = ssd_net.arg_scope(data_format=DATA_FORMAT)
with slim.arg_scope(arg_scope):
predictions, localisations, logits, end_points = \
ssd_net.net(b_image, is_training=False)
# Add losses functions.
ssd_net.losses(logits, localisations,
b_gclasses, b_glocalisations, b_gscores)
# Performing post-processing on CPU: loop-intensive, usually more efficient.
with tf.device('/device:CPU:0'):
# Detected objects from SSD output.
localisations = ssd_net.bboxes_decode(localisations, ssd_anchors)
rscores, rbboxes = \
ssd_net.detected_bboxes(predictions, localisations,
select_threshold=FLAGS.select_threshold,
nms_threshold=FLAGS.nms_threshold,
clipping_bbox=None,
top_k=FLAGS.select_top_k,
keep_top_k=FLAGS.keep_top_k)
# Compute TP and FP statistics.
num_gbboxes, tp, fp, rscores = \
tfe.bboxes_matching_batch(rscores.keys(), rscores, rbboxes,
b_glabels, b_gbboxes, b_gdifficults,
matching_threshold=FLAGS.matching_threshold)
# Variables to restore: moving avg. or normal weights.
if FLAGS.moving_average_decay:
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, tf_global_step)
variables_to_restore = variable_averages.variables_to_restore(
slim.get_model_variables())
variables_to_restore[tf_global_step.op.name] = tf_global_step
else:
variables_to_restore = slim.get_variables_to_restore()
# =================================================================== #
# Evaluation metrics.
# =================================================================== #
with tf.device('/device:CPU:0'):
dict_metrics = {}
# First add all losses.
for loss in tf.get_collection(tf.GraphKeys.LOSSES):
dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)
# Extra losses as well.
for loss in tf.get_collection('EXTRA_LOSSES'):
dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)
# Add metrics to summaries and Print on screen.
for name, metric in dict_metrics.items():
# summary_name = 'eval/%s' % name
summary_name = name
op = tf.summary.scalar(summary_name, metric[0], collections=[])
# op = tf.Print(op, [metric[0]], summary_name)
tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
# FP and TP metrics.
tp_fp_metric = tfe.streaming_tp_fp_arrays(num_gbboxes, tp, fp, rscores)
for c in tp_fp_metric[0].keys():
dict_metrics['tp_fp_%s' % c] = (tp_fp_metric[0][c],
tp_fp_metric[1][c])
# Add to summaries precision/recall values.
aps_voc07 = {}
aps_voc12 = {}
for c in tp_fp_metric[0].keys():
# Precison and recall values.
prec, rec = tfe.precision_recall(*tp_fp_metric[0][c])
# Average precision VOC07.
v = tfe.average_precision_voc07(prec, rec)
summary_name = 'AP_VOC07/%s' % c
op = tf.summary.scalar(summary_name, v, collections=[])
# op = tf.Print(op, [v], summary_name)
tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
aps_voc07[c] = v
# Average precision VOC12.
v = tfe.average_precision_voc12(prec, rec)
summary_name = 'AP_VOC12/%s' % c
op = tf.summary.scalar(summary_name, v, collections=[])
# op = tf.Print(op, [v], summary_name)
tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
aps_voc12[c] = v
# Mean average precision VOC07.
summary_name = 'AP_VOC07/mAP'
mAP = tf.add_n(list(aps_voc07.values())) / len(aps_voc07)
op = tf.summary.scalar(summary_name, mAP, collections=[])
op = tf.Print(op, [mAP], summary_name)
tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
# Mean average precision VOC12.
summary_name = 'AP_VOC12/mAP'
mAP = tf.add_n(list(aps_voc12.values())) / len(aps_voc12)
op = tf.summary.scalar(summary_name, mAP, collections=[])
op = tf.Print(op, [mAP], summary_name)
tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
# for i, v in enumerate(l_precisions):
# summary_name = 'eval/precision_at_recall_%.2f' % LIST_RECALLS[i]
# op = tf.summary.scalar(summary_name, v, collections=[])
# op = tf.Print(op, [v], summary_name)
# tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
# Split into values and updates ops.
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map(dict_metrics)
# =================================================================== #
# Evaluation loop.
# =================================================================== #
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)
# config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1
# Number of batches...
if FLAGS.max_num_batches:
num_batches = FLAGS.max_num_batches
else:
num_batches = math.ceil(dataset.num_samples / float(FLAGS.batch_size))
if not FLAGS.wait_for_checkpoints:
if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
else:
checkpoint_path = FLAGS.checkpoint_path
tf.logging.info('Evaluating %s' % checkpoint_path)
# Standard evaluation loop.
start = time.time()
slim.evaluation.evaluate_once(
master=FLAGS.master,
checkpoint_path=checkpoint_path,
logdir=FLAGS.eval_dir,
num_evals=num_batches,
eval_op=list(names_to_updates.values()),
variables_to_restore=variables_to_restore,
session_config=config)
# Log time spent.
elapsed = time.time()
elapsed = elapsed - start
print('Time spent : %.3f seconds.' % elapsed)
print('Time spent per BATCH: %.3f seconds.' % (elapsed / num_batches))
else:
checkpoint_path = FLAGS.checkpoint_path
tf.logging.info('Evaluating %s' % checkpoint_path)
# Waiting loop.
slim.evaluation.evaluation_loop(
master=FLAGS.master,
checkpoint_dir=checkpoint_path,
logdir=FLAGS.eval_dir,
num_evals=num_batches,
eval_op=list(names_to_updates.values()),
variables_to_restore=variables_to_restore,
eval_interval_secs=60,
max_number_of_evaluations=np.inf,
session_config=config,
timeout=None)
if __name__ == '__main__':
tf.app.run()