-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode.py
157 lines (123 loc) · 4.75 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
from qiskit import QuantumCircuit, Aer, execute
from scipy.optimize import minimize
# ============================
# Define the problem: MaxCut
# ============================
# Define the adjacency matrix of the graph
adj_matrix = np.array([
[0, 2, 3, 0],
[2, 0, 0, 5],
[3, 0, 0, 4],
[0, 5, 4, 0]
])
# Number of nodes in the graph
num_nodes = len(adj_matrix)
# Number of shots for the quantum circuit execution
num_shots = 1024
# ============================
# Define the RyRz ansatz
# ============================
def ryrz_ansatz(parameters, num_qubits):
"""
Creates a quantum circuit using the RyRz ansatz.
Args:
parameters (list or np.ndarray): List of variational parameters.
num_qubits (int): Number of qubits in the circuit.
Returns:
QuantumCircuit: The RyRz ansatz quantum circuit.
"""
circuit = QuantumCircuit(num_qubits)
num_params = len(parameters)
if num_params != 2 * num_qubits:
raise ValueError(
f"Expected {2 * num_qubits} parameters, but got {num_params}."
)
# Apply Ry and Rz rotations
for i in range(num_qubits):
circuit.ry(parameters[2 * i], i)
circuit.rz(parameters[2 * i + 1], i)
# Add entangling CNOT gates
for i in range(num_qubits - 1):
circuit.cx(i, i + 1)
# Optionally, you could measure here (for debugging/testing)
return circuit
# ============================
# Define the MaxCut cost function
# ============================
def maxcut_cost(parameters, adj_matrix, num_qubits):
"""
Computes the cost function for the MaxCut problem.
Args:
parameters (list or np.ndarray): Variational parameters for the RyRz ansatz.
adj_matrix (np.ndarray): Adjacency matrix of the graph.
num_qubits (int): Number of qubits in the circuit.
Returns:
float: The negative cost function value.
"""
# Build the quantum circuit
circuit = ryrz_ansatz(parameters, num_qubits)
circuit.measure_all()
# Simulate the circuit
simulator = Aer.get_backend('qasm_simulator')
result = execute(circuit, simulator, shots=num_shots).result()
counts = result.get_counts()
# Compute the expectation value (MaxCut cost)
cost = 0
for bitstring, count in counts.items():
cut_value = 0
# Calculate cut value based on the adjacency matrix
for i in range(num_qubits):
for j in range(num_qubits):
if adj_matrix[i, j] > 0: # Only consider edges
bit_i, bit_j = int(bitstring[i]), int(bitstring[j])
if bit_i != bit_j: # Different bit values contribute to the cut
cut_value += adj_matrix[i, j]
cost += cut_value * (count / num_shots)
return -cost # Negative because we minimize
# ============================
# Optimize the parameters
# ============================
# Number of parameters (2 per qubit for Ry and Rz rotations)
num_parameters = 2 * num_nodes
# Initialize parameters randomly
initial_parameters = np.random.rand(num_parameters) * 2 * np.pi
# Define the cost function for optimization
def cost_function(params):
return maxcut_cost(params, adj_matrix, num_nodes)
# Perform optimization using SciPy's minimize
optimizer_method = 'L-BFGS-B' # You can use other methods like 'COBYLA' or 'Nelder-Mead'
result = minimize(cost_function, initial_parameters, method=optimizer_method)
# ============================
# Output the results
# ============================
# Optimized parameters and cost
optimized_parameters = result.x
minimum_cost = result.fun
print("Optimized Parameters:\n", optimized_parameters)
print("Minimum Cost (negative of MaxCut value):", minimum_cost)
# ============================
# Optional: Interpret results
# ============================
def interpret_results(parameters, num_qubits):
"""
Interprets the optimized parameters to provide a solution to MaxCut.
Args:
parameters (list or np.ndarray): Optimized parameters for the RyRz ansatz.
num_qubits (int): Number of qubits in the circuit.
Returns:
str: A possible solution to the MaxCut problem.
"""
# Generate the final circuit
circuit = ryrz_ansatz(parameters, num_qubits)
circuit.measure_all()
# Simulate the circuit
simulator = Aer.get_backend('qasm_simulator')
result = execute(circuit, simulator, shots=num_shots).result()
counts = result.get_counts()
# Find the most probable bitstring
max_bitstring = max(counts, key=counts.get)
return max_bitstring
# Interpret the results
solution_bitstring = interpret_results(optimized_parameters, num_nodes)
print("Optimal Solution Bitstring:", solution_bitstring)