-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_dbscan.py
81 lines (65 loc) · 2.02 KB
/
plot_dbscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler
def Interpret(line):
params=line.split(',')
tid=params[0]
cal=params[1]
date=cal.split(' ')[0]
ymd=date.split('-')
yy=int(ymd[0])
mo=int(ymd[1])
dd=int(ymd[2])
time=cal.split(' ')[1]
hms=time.split(':')
hh=int(hms[0])
mm=int(hms[1])
ss=int(hms[2])
x=float(params[2])
y=float(params[3])
record={'id':tid,'date':date,'time':time,\
'dt':{'yy':yy,'mo':mo,'dd':dd,'hh':hh,'mm':mm,'ss':ss},\
'x':x,'y':y}
return record
with open('data/data_dbscan_1', 'r') as f:
X = []
for line in f:
tmp = Interpret(line)
X.append([tmp['x'], tmp['y']])
Y = StandardScaler().fit_transform(X)
X = []
for i in Y:
if (i[0] <= 1 and i[0] >= -1) and (i[1] <= 1 and i[1] >= -1):
X.append([i[0], i[1]])
X = StandardScaler().fit_transform(X)
print(X)
# Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=20).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
#print(db)
#print(core_samples_mask)
#print(labels)
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()