-
Notifications
You must be signed in to change notification settings - Fork 1
/
GCG Super Script - Construction Version.R
429 lines (305 loc) · 15.3 KB
/
GCG Super Script - Construction Version.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
# Made By Derek J. Debrauske, 2021
# ddebrauske@gmail.com
# ddebrauske@wisc.edu
#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
#Update, install and attach GCG package.
remove.packages("GCG")#remove GCG package from R root folder so you can update it.
detach(package:GCG)#remove GCG package from workspace so you can update it.
devtools::install_github("ddebrauske/GCG", force=TRUE)#install GCG package from github
library(GCG) #add package to current R environment
#run "help()" commands to see more information on each function
#run "head()" commands to preview data
#Optional - Set the working directory to the folder you'd like to work from
setwd("C:/Users/Derek Debrauske/Dropbox/R/Projects/20210330 GCG superscript testing/20210303 Chemgen validation R2/")
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##Act I: Gathering data
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#~~~~~~~~~~~~
#1. Step through plate layout input file, edited from template
# This function returns a long data frame, combining all of the information from your plate layouts. Each row of this data frame refers to one well.
layout <- PlateLayout("Plate_Layout.csv") #change this path to refer to th elocation of your Plate_layout file.
#~~~~~~~~~~~~
#2. Do the same with the blank input file.
# Returns a similar, long dataframe with wells as rows.
blank <- PlateBlank("Plate_Blanks.csv") #change this path to refer to th elocation of your Plate_blank file.
#~~~~~~~~~~~~
#3. Combine all of the above information into one table.
layout.blanks <- CombineLayoutBlank(layoutDF = layout, blankDF = blank)
#~~~~~~~~~~~~
#Optional step -- if your plate reader data is exported from your plate reader as a workbook with many sheets, you can use this function to separate these sheets into separate .csv files to be used in the next steps. (uncomment to use)
# ExcelToCSV(path = "", out_dir = "")
# list.files("")
#~~~~~~~~~~~~
#4. Import plate reader data from .csv files into R.
Timepoint.data <- Import(path = "Plate_reader_data/", plate.reader.type = "spark", read.interval = 60)
#~~~~~~~~~~~~
#5. attach information from layout and blank to plate reader data. this function back-subtracts the blank values from the OD600 of corresponding wells.
# You can run this one of two ways:
# 1. Without back subtracting blanks: use only
#data.combined.no.blank <- TimeseriesLayoutBlank(timepoint.df = Timepoint.data, layout.df = layout)
# 2. With Back-subtracting blanks:
data.combined <- TimeseriesLayoutBlank(timepoint.df= Timepoint.data, layout.blank.df = layout.blanks)
#5.1 subset out all strains labeled as "ddH2O" these are my border wells
data.combined <- subset(data.combined, Strain != "ddH2O")
data.combined <- subset(data.combined, Time != 2880)
#~~~~~~~~~~~~
#6. Summarize technical replicates
#this finds mean, SE of biological replicates. if there are technical replicates, they are averaged first, then mean and SE is calculated from these means.
Tech.Rep.Summary <- SummarizeTechReps(data.combined)
#~~~~~~~~~~~~
#7. Summarize Biological Replicates
Bio.Rep.Summary <- SummarizeBioReps(Tech.Rep.Summary)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##Act II: Plotting Curves
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#~~~~~~~~~~~~
# Plot all replicate data as a wrap of all conditions
help("GCGplot_wrap")
p <- GCGplot_wrap(Bio.Rep.Summary, path= "./", graphic.title = "ChemGen Validation R2")
print(p)
#~~~~~~~~~~~~
# Plot individual conditions
help("GCGplot_conds")
GCGplot_conds(Bio.Rep.Summary, graphic.title ="ChemGen Validation R2", path= "./")#see results in folder
#~~~~~~~~~~~~
#plot all wells to spot-check plates.
help("GCGplot_matrices")
GCGplot_matrices(data.combined, path= "./" , graphic.title = "ChemGen Validation R2" )#see results in folder
#~~~~~~~~~~~~
#plot each biological rep as a separate facet_wrap
help("GCGplot_bioreps")
GCGplot_bioreps(data.combined, path = "./", graphic.title = "ChemGen Validation R2")#see results in folder
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## ACT III: find eAUC of every curve in experiment
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#combine info into one column header, separate afterwards.
data.combined.wide <- matrix(NA)
data.combined.wide <- data.combined.no.ddH2O
data.combined.wide[, ncol(data.combined.wide) + 1 ] <- mapply(paste, sep= "@", data.combined.wide$Strain , data.combined.wide$Condition, data.combined.wide$Bio_Rep,data.combined.wide$plate.name, data.combined.wide$Coordinate)
colnames(data.combined.wide)[8] <- "Strain.Cond.Rep.Plate.Coord"
colnames(data.combined.wide)[3] <- "time"
data.combined.wide <- data.combined.wide[c(3,4,8)]
data.combined.wide <- as.data.frame(tidyr::pivot_wider(data.combined.wide, values_from = OD600, names_from = "Strain.Cond.Rep.Plate.Coord"))#separate data combined into wide table
data.combined.wide$time <- data.combined.wide$time/60
#separate Growthcurver wide format dataframe into individual vectors, plot eAUC
#this loop is based on source code from growthcurver(line 138 in growthcurver/R/summarize-growth-by-plate.R )
eAUC_out <- as.data.frame(matrix(NA, 0,2))
colnames(eAUC_out) <- c("ID", "eAUC")
names <- colnames(data.combined.wide)
for( i in 1:length(names)){
if(names[i] != "time"){
x <- data.combined.wide$time
n <- length(x)
y <- data.combined.wide[,i]
ID <- names[i]
eAUC.i <- sum((x[2:n] - x[1:n-1]) * (y[2:n] + y[1:n-1]) / 2)
data.i <- c(ID,eAUC.i)
eAUC_out <- rbind(eAUC_out,data.i)
}
}
colnames(eAUC_out) <- c("ID", "eAUC")
eAUC_out$eAUC <- as.numeric(eAUC_out$eAUC)
eAUC_out <- tidyr::separate(data=eAUC_out,col = ID, into = c("Strain", "Condition", "Bio_Rep", "Plate", "Coord"), sep= "@" )
eAUC_techreps <- plyr::ddply(eAUC_out, c("Strain", "Condition", "Bio_Rep"), plyr::summarise,
N = sum(!is.na(eAUC)),
mean = mean(eAUC,na.rm=TRUE),
sd = sd(eAUC,na.rm=TRUE),
se = sd / sqrt(N))
eAUC_techreps <- dplyr::rename("eAUC" = "mean", .data = eAUC_techreps)
eAUC_bioreps <- plyr::ddply(eAUC_techreps, c("Strain", "Condition"), plyr::summarise,
N = sum(!is.na(eAUC)),
mean = mean(eAUC,na.rm=TRUE),
sd = sd(eAUC,na.rm=TRUE),
se = sd / sqrt(N))
eAUC_bioreps <- dplyr::rename("eAUC" = "mean", .data = eAUC_bioreps)
#~~~~~~~~~~~~~~~~
#Plot Emperical AUC
p<- ggplot2::ggplot(eAUC_techreps, ggplot2::aes(x=Strain, y=eAUC, group=Strain, colour=Strain))+
ggplot2::facet_wrap(~Condition)+
ggplot2::geom_point(size= 3)+
ggplot2::stat_summary(fun = mean, geom="point", shape=15, color="black", fill="black")+
ggplot2::stat_summary(fun.data = ggplot2::mean_se, geom="errorbar", color= "black", width= 0.3)+
ggplot2::theme(axis.text.x= ggplot2::element_blank())+
ggplot2::labs(title= "Emperical AUC",
x="Strain",
y="AUC",
ggplot2::element_text(size=15, face="bold"))
print(p)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##Act IV: Analyzing Results Using GrowthCurver and other functions
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# #~~~~~~~~~~~~
# # Convert data.combined plate reader data into growthcurver format.this is only if you want to go straight from data.combined.
# help("Growthcurver_convert")
# d <- Growthcurver_convert(data.combined) #output is /.growthcurverfile.csv
#
# #~~~~~~~~~~~~
# #Use Growthcurver to analyze raw data
# gc_plate <- growthcurver::SummarizeGrowthByPlate(d)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##Act V: Analyzing Biological replicates individually with Growthcurver and findgr
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#~~~~~~~~~~~~
#Analyze biological replicates seperately with Growthcurver
data.combined.gcr <- matrix(data= NA)
data.combined.gcr <- Tech.Rep.Summary
data.combined.gcr[, ncol(data.combined.gcr) + 1 ] <- mapply(paste, sep= "@", data.combined.gcr$Strain , data.combined.gcr$Condition, data.combined.gcr$Bio_Rep) #combines all strain, cond, bio rep infomation into one identifying column
data.combined.gcr <- data.combined.gcr[, c(ncol(data.combined.gcr),3:(ncol(data.combined.gcr)-1))] #reorders columns to be easier to look at , ID being in column 1
colnames(data.combined.gcr)[1] <- "Strain.Cond.Rep"
colnames(data.combined.gcr)[2] <- "time" #needs to be lowercase for growthcurver format
data.combined.gcr <- data.combined.gcr[c(1,2,5)]
data.combined.gcr.wide <- as.data.frame(tidyr::pivot_wider(data.combined.gcr, values_from = OD600, names_from = "Strain.Cond.Rep"))
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## ACT VI: find growth rate
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#@@@ Under Construction
#~~~~~~~~~~~~~~~~
#Find maximum growth rate of curve using ln() transformation and sliding window
#This script contains a function that can be used to find the growth rate of
#a set of points grown on the Biotek plate reader.
#x = a vector of data points, e.g. c(0.1, 0.1, 0.2, 0.25, 0.3, ...)
#t = a vector of time points, e.g. c(0, 15, 30, 45, 60, ...)
#plottitle = the title to go on the plot of the fit
#int = the number of time steps that should be used to fit the line
#r2.cutoff = how stringent the fit needs to be --> 1 is the max.
d <- data.combined.gcr.wide
summary1 <- as.data.frame(matrix(NA, nrow=ncol(d)-1, ncol=5))
summary1[1] <- colnames(d)[2:ncol(d)]
colnames(summary1) <- c("Condition", "m", "r2", "lag", "note")
#source("C:/Users/ddebr/Dropbox/R/Functions/find_gr.R")
path= "C:/Users/ddebr/Dropbox/R/Projects/20210330 GCG superscript testing/20210303 Chemgen validation R2/Figures/GR/" #path where you would like to save figures
for(j in 2:ncol(d)){
jpeg(filename = paste(path, if(FALSE %in% grepl("%", colnames(d)[j])){
colnames(d)[j] #if there is a "%" in what will be the file name, replace with "percent"
}else{
sub( "%", " percent", colnames(d)[j])}, ".jpeg"))
x = as.vector(d[[j]])
t=d$time
plottitle = colnames(d)[j]
r2.cutoff = 0.995
int = 5
#findgr = function(x, t, plottitle, int=8, r2.cutoff=0.997) {
x = as.numeric(x)
n = length(x)
mat = NULL
max = c(0,0,0,NA)
#are x and t the same length?
if (length(x) != length(t)) {
cat("Error: Your data and time are not the same length.\n")
stop()
}
#is the line basically flat?
fit = lm(x~t)
m = abs(coefficients(fit)[[2]])
if (m < 0.00001) {
max=c(0,0,0,NA)
lag=NA
summary1$note[j-1] <- paste(summary1$note[j-1], "no growth")
plot(t, log(x), pch=20, xlab="time", ylab="ln(OD600)", main=plottitle)
mtext("no growth", side=3, line=-1, at=0, cex=0.8, adj=0)
print(paste(j, "-- no growth"))
}else{#if not, find a slope
x[which(x <= 0)] = 0.001 #transform values < 0
x = log(x)
for (i in 1:(n-int)) {
fit = lm(x[i:(i+int)]~t[i:(i+int)]) #linear regression on log transformed data.
m = coefficients(fit)[[2]]
b = coefficients(fit)[[1]]
r2 = summary(fit)$r.squared
mat = rbind(mat, c(i, b, m, r2))
}
mat = mat[which(mat[,4] > r2.cutoff),] #only include slopes greater than the R2 cutoff.
if(is.matrix(mat) && dim(mat)[1] != 0 && dim(mat)){ #DD modified 20210331 -- added this point to ignore data that is not within the R2 cutoff. before adding this, code would break due to having a matrix subset with no dimensions.
max = mat[which.max(mat[,3]),]
par(las=1, mar=c(5, 4, 4, 4) + 0.1)
plot(t,x, type="n", pch=20, xlab="time", ylab="ln(OD600)", main=plottitle)
usr.old = par("usr")
#how long is this in exponential growth?
fit.line = sapply(t, function(x) max[3]*x+max[2])
resid = fit.line-x
residper = abs(resid/fit.line)
resid.mat = rbind(t, fit.line, x, resid, residper)
resid.mat = resid.mat[,which(resid.mat[5,] < 0.05)]
lag = resid.mat[1,1]
mtext(paste("lag =",round(lag,2)),side=3, line=-3, at=0, cex=0.8, adj=0)
time.in.exp = resid.mat[1,ncol(resid.mat)]-resid.mat[1,1]
abline(v=lag, col="cadet blue", lty=2)
abline(v=resid.mat[1,ncol(resid.mat)], col="cadet blue", lty=2)
#plotting instantaneous growth rate -- DD uncommented
dx = diff(x)/(t[2]-t[1])
par(usr=c(par("usr")[1:2],min(dx)*1.05, max(dx)*1.05))
points(t[1:(length(t)-1)],dx, pch=18, type="o", col="dark grey", lty=1)
axis(4, col.axis="dark grey", col.ticks="dark grey")
mtext("delta(x)/delta(t)", side=4, line=3, col="dark grey", las=3)
#plot
par(usr=usr.old)
points(t,x,pch=20)
abline(lm(x[max[1]:(max[1]+int-1)]~t[max[1]:(max[1]+int-1)]), col="red", lty=2, lwd=2)
points(t[max[1]:(max[1]+int-1)], x[max[1]:(max[1]+int-1)], col="red")
mtext(paste("m =",round(max[3],3)), side=3, line=-1, at=0, cex=0.8, adj=0)
mtext(paste("r2 =",round(max[4],4)), side=3, line=-2, at=0, cex=0.8, adj=0)
#mtext(colnames(d)[j])
}else{
summary1$note[j-1] <- paste(summary1$note[j-1],"- below r2 cutoff")
}
}
gr.data <- c("m"=max[3], "r2"=max[4], "lag"=lag)
#gr.data<- findgr(x = as.vector(d[[i]]), t=d$time, plottitle = NA, r2.cutoff = 0.994, int = 3)
summary1$m[j-1] <- gr.data[[1]]
summary1$r2[j-1] <- gr.data[[2]]
summary1$lag[j-1] <- gr.data[[3]]
dev.off() #saves JPEG device.
}
# #@@@@@@@@@@@@@@@@@@@@@@@
# source("C:/Users/ddebr/Dropbox/R/Functions/find_gr.R")
#
# summary1 <- as.data.frame(matrix(NA, nrow=ncol(d)-1, ncol=4))
# summary1[1] <- colnames(d)[2:ncol(d)]
# colnames(summary1) <- c("Condition", "m", "r2", "lag")
#
# for(j in 2:ncol(d)){
#
# gr.data<- findgr(x = as.vector(d[[j]]), t=d$time, plottitle = NA, r2.cutoff = 0.990, int = 3)
# summary1$m[j-1] <- gr.data[[1]]
# summary1$r2[j-1] <- gr.data[[2]]
# summary1$lag[j-1] <- gr.data[[3]]
#
# }
#
#~~~~~~~~~~~~~~~~~
#add information from layout.blanks to plate.summary
# plate_summary$Strain <- NA
# plate_summary$Condition <- NA
#
#
# #write for() loop pulling condition and strain information from layout.blanks
# #copied and edited from combine layout.blank
# for(i in 1:nrow(plate_summary)){ #step through layout blanks row by row
# for(j in 1:nrow(layout.blanks)){ #step through blank.out until you find a matching coordinate&&plate#
# summ.coord <- plate_summary$coordinate[i]
# layout.coord <- layout.blanks$Coordinate[j]
#
# summ.plate.number <- as.character(plate_summary$plate[i])
# layout.plate.number <- as.character(layout.blanks$Plate[j])
#
#
# if(layout.coord == summ.coord && layout.plate.number == summ.plate.number){ #if they match, add OD600 value to the new column of row i
# plate_summary$Strain[i] <- layout.blanks$Strain[j]
# plate_summary$Condition[i] <- layout.blanks$Condition[j]
# }
# }
# }
#
#for(i in 1:length(dev.list())){dev.off()}
setwd("C:/Users/Derek Debrauske/Documents/R/GCG/")
setwd("C:/Users/ddebr/R/GCG/")
devtools::document()
usethis::use_package("openxlsx")
# ______ __ __ ___ ___ ____ ___
# | || | | / _] / _]| \ | \
# | || | | / [_ / [_ | _ || \
# |_| |_|| _ || _] | _]| | || D |
# | | | | || [_ | [_ | | || |
# | | | | || | | || | || |
# |__| |__|__||_____| |_____||__|__||_____|