-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathOLDadam_THESIS_CRN_performance_metrics.py
241 lines (212 loc) · 7.62 KB
/
OLDadam_THESIS_CRN_performance_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#! /usr/bin/env python
#adam-predecessor# this derives from adam_THESIS_CRN_number_of_masks.py
from matplotlib.pylab import *
import astropy
from glob import glob
import scipy.ndimage
import os
import pymorph
import skimage
from skimage import measure
from skimage import morphology
import mahotas
import sys ; sys.path.append('/u/ki/awright/InstallingSoftware/pythons')
from import_tools import *
conn8=array([[1,1,1],[1,1,1],[1,1,1]])
conn4=array([[0,1,0],[1,1,1],[0,1,0]])
connS=array([[0,1,1,0],[1,1,1,1],[1,1,1,1],[0,1,1,0]],dtype=bool)
from adam_quicktools_ArgCleaner import ArgCleaner
args=ArgCleaner(sys.argv)
print "args=", args
#/u/ki/awright/data/eyes/coadds-pretty_for_10_3_cr.2/
import pickle
fl=open('/u/ki/awright/thiswork/eyes/Prettys_info.2.1.pkl','rb')
Pinfo=pickle.load(fl) #CRbads[filter][CRnum]['CCDnum','weight_file','file','dark_file','CRtag'] only 'file' and 'CRtag' are useful here
fl.close()
import astropy.io.fits as pyfits
from adam_quicktools_header_key_add import add_key_val
CRfl='/u/ki/awright/thiswork/eyes/CRbads_info.2.1.pkl'
CRfo=open(CRfl)
CRinfo=pickle.load(CRfo)
CRfo.close()
#args=glob('/u/ki/awright/data/eyes/CRNitschke_output/data_SCIENCE_compare/BB_ERASED_*_3.fits')
#/u/ki/awright/data/eyes/CRNitschke_output/data_SCIENCE_cosmics/SEGMENTATION_CRN-cosmics_MACS0429-02_W-J-B.SUPA0154630_1.fits
tinput_dir='/nfs/slac/kipac/fs1/u/awright/eyes/eye-10_3_cr.2.1/W-C-RC/both/edge_out/inputs/'
toutput_dir='/nfs/slac/kipac/fs1/u/awright/eyes/eye-10_3_cr.2.1/W-C-RC/both/edge_out/outputs/'
OUTDIR="/u/ki/awright/my_data/thesis_stuff/CRN_final_purecomp/"
tinputfls=glob('/nfs/slac/kipac/fs1/u/awright/eyes/eye-10_3_cr.2.1/W-C-RC/both/edge_out/inputs/eye_CRnum[0-9]_Pnum*.fits')
tinputfls+=glob('/nfs/slac/kipac/fs1/u/awright/eyes/eye-10_3_cr.2.1/W-C-RC/both/edge_out/inputs/eye_CRnum1[0-9]_Pnum*.fits')
tinputfls+=glob('/nfs/slac/kipac/fs1/u/awright/eyes/eye-10_3_cr.2.1/W-C-RC/both/edge_out/inputs/eye_CRnum20_Pnum*.fits')
#tinputfls=glob(OUTDIR+'CRNmask_eye_CRnum0_Pnum*.fits')
compdir='/u/ki/awright/data/eyes/CRNitschke_output/data_SCIENCE_compare/'
alldir='/u/ki/awright/data/eyes/CRNitschke_output/data_SCIENCE_cosmics/'
time=[]
rms=[]
seeing=[]
CRN_Ntracks=[]
pure_mask_level=[]
pure_mask_overmask_frac=[]
comp_mask_level=[]
comp_pix_level=[]
for fl in tinputfls:
try:
flname=os.path.basename(fl).split('.')[0]
if 'OCF' in fl:
BASE=os.path.basename(fl).split('OCF')[0]
else:
BASE=flname
#CR_segfl=alldir+'SEGMENTATION_CRN-cosmics_'+fl.split('_BBCR_')[-1]
CR_segfl=OUTDIR+'OLDmask_'+BASE+".fits"
CRNfo=astropy.io.fits.open(CR_segfl)
CRNheader=CRNfo[0].header
CRN_seg=CRNfo[0].data
CRN_Nlabels=CRN_seg.max()
CRN_labels=arange(CRN_Nlabels)+1
CRN_mask=CRNfo[0].data>0
CRN_slices=scipy.ndimage.find_objects(CRN_seg)
CR_expsegfl=OUTDIR+'OLDmask_expanded_'+BASE+".fits"
CRNexpfo=astropy.io.fits.open(CR_expsegfl)
CRN_exp_mask=asarray(CRNexpfo[0].data,dtype=bool)
#print (CRN_exp_mask[truth]>0.0).mean()
tofl=toutput_dir+BASE+".fits"
tofo=astropy.io.fits.open(tofl)
toheader=tofo[0].header
toim=tofo[0].data
truth=tofo[0].data>0
#adam-tmp# put BB or BBSS in here depending on the final output
#CR_newsegfl=alldir+'SEGMENTATION_BBSS_CRN-cosmics_'+fl.split('_BBCR_')[-1]
#fo=astropy.io.fits.open(fl)
#fo=astropy.io.fits.open(fl)
tifo=astropy.io.fits.open(fl)
tiheader=tifo[0].header
tiim=tifo[0].data
true_seg,true_Nlabels=scipy.ndimage.label(truth,conn8)
true_labels=arange(true_Nlabels)+1
true_slices=scipy.ndimage.find_objects(true_seg)
CRN_exp_seg,CRN_exp_Nlabels=scipy.ndimage.label(CRN_exp_mask,conn8)
CRN_exp_labels=arange(CRN_exp_Nlabels)+1
CRN_exp_slices=scipy.ndimage.find_objects(CRN_exp_seg)
hits=[]
frac_necessarys=[]
for l in CRN_labels:
sl=CRN_slices[l-1]
spots=CRN_seg[sl]==l
true_spots=truth[sl]
true_at_CRNl=true_spots[spots]
hit=true_at_CRNl.any()
frac_necessary=true_at_CRNl.mean()
#lseg_num=spots.sum()
hits.append(hit)
frac_necessarys.append(frac_necessary)
CRNl_frac_true=array(frac_necessarys)
CRNl_hit=array(hits)
pure_mask=CRNl_hit.mean()
# true hit CRN?
thits=[]
tfrac_necessarys=[]
for l in true_labels:
sl=true_slices[l-1]
spots=true_seg[sl]==l
CRN_spots=CRN_exp_mask[sl]
CRN_at_truel=CRN_spots[spots]
thit=CRN_at_truel.any()
tfrac_necessary=CRN_at_truel.mean()
#lseg_num=spots.sum()
thits.append(thit)
tfrac_necessarys.append(tfrac_necessary)
truel_frac_CRN=array(tfrac_necessarys)
truel_hit=array(thits)
comp_mask=truel_hit.mean()
#fo=astropy.io.fits.open(CR_newsegfl)
#CRN_seg=fo[0].data
CRmasksN=CRN_seg.max()
CRpixN=(CRN_seg>0).sum()
comp_pix=(CRN_exp_mask[truth]>0.0).mean()
pure_pix=(truth[CRN_mask]>0.0).mean()
print comp_pix , pure_mask, pure_pix , CRN_exp_Nlabels,true_Nlabels,tiheader['MYSEEING'],tiheader['EXPTIME'],tiheader['MYRMS']
#fo=astropy.io.fits.open(CR_segfl)
#seginit=fo[0].data
#seginit.max()
#CRmasks0=seginit.max()
#CRpix0=(seginit>0).sum()
pure_mask_level.append(pure_mask)
pure_mask_overmask_frac.append(1-CRNl_frac_true.mean())
comp_mask_level.append(comp_mask)
comp_pix_level.append(comp_pix)
seeing.append(tiheader['MYSEEING'])
time.append(tiheader['EXPTIME'])
rms.append(tiheader['MYRMS'])
CRN_Ntracks.append(CRN_Nlabels)
except IOError as e:
print e
continue
ACRN_Ntracks=array(CRN_Ntracks)
Aseeing=array(seeing)
Arms=array(rms)
Apure_mask_level=array(pure_mask_level)
Acomp_mask_level=array(comp_mask_level)
Apure_mask_overmask_frac=array(pure_mask_overmask_frac)
Acomp_pix_level=array(comp_pix_level)
Atime=array(time)
ANmasksNrate=array(ACRN_Ntracks)/Atime
def seeing_binned(Aprop):
less_pt6=Aprop[Aseeing<=0.6]
pt6_to_pt7=Aprop[(Aseeing>0.6) * (Aseeing<0.7)]
great_pt7=Aprop[Aseeing>=0.7]
print '<=0.6:',less_pt6.mean()
print '0.6<seeing<0.7:',pt6_to_pt7.mean()
print '>=0.7:',great_pt7.mean()
return round(less_pt6.mean(),2),round(pt6_to_pt7.mean(),2),round(great_pt7.mean(),2)
print '\n# purity at mask level:'
pure=seeing_binned(Apure_mask_level)
print '\n# overmasking by this amount on average:'
om=seeing_binned(Apure_mask_overmask_frac)
print '\n# completeness at mask level :'
compm=seeing_binned(Acomp_mask_level)
print '\n# completeness at pixel level :'
compp=seeing_binned(Acomp_pix_level)
print '\nCRN masks per exptime:'
Nmask=seeing_binned(ANmasksNrate)
seeings=['seeing<=0.6','0.6<seeing<0.7','seeing>=0.7']
import astropy.table as tbl
Seeings=['Seeing$\leq 0\\arcsecf6$','$0\\arcsecf6<$Seeing$<0\\arcsecf7$','Seeing$\geq0\\arcsecf7$']
tab=tbl.Table(data=[Seeings , pure, compp , compm ],names=['Seeing Range','Purity per mask','Completeness per pixel','Completeness per mask'])
#tab=tbl.Table(data=[Seeings , pure, compp , compm , om ],names=['Seeing Range','Purity at mask level','Completeness at pixel level','Completeness at mask level', 'Frac. Mask Outside'])
tab.write('OLD_table.tex',format='latex',overwrite=True)
## for BB masks:
# masks, 0 and N:
#<=0.6: 1041.33333333
#0.6<seeing<0.7: 1074.14516129
#>=0.7: 779.873786408
#<=0.6: 593.855072464
#0.6<seeing<0.7: 561.225806452
#>=0.7: 353.32038835
## pixels, 0 and N:
#<=0.6: 11096.8985507
#0.6<seeing<0.7: 13478.0
#>=0.7: 9933.27184466
#<=0.6: 22824.4202899
#0.6<seeing<0.7: 26138.3870968
#>=0.7: 18999.7378641
#mask rate:
#<=0.6: 3.49563607085
#0.6<seeing<0.7: 2.98745519713
#>=0.7: 1.69027777778
## for BB masks:
#mask-pixels rate at 0:
#<=0.6: 65.8068639291
#0.6<seeing<0.7: 71.0849171147
#>=0.7: 47.9930690399
#mask-pixels rate at N:
#<=0.6: 134.256549919
#0.6<seeing<0.7: 136.891610663
#>=0.7: 90.5776240561
## for BBSS masks:
#mask-pixels rate at 0:
#<=0.6: 65.8068639291
#0.6<seeing<0.7: 71.0849171147
#>=0.7: 47.9930690399
#mask-pixels rate at N:
#<=0.6: 102.991151369
#0.6<seeing<0.7: 114.216966846
#>=0.7: 86.5826941748