-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataloader.py
106 lines (89 loc) · 3.88 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import pandas as pd
import csv
from torch.utils.data import Dataset, DataLoader
import hashlib
import os
import pickle
from tqdm import tqdm
class RegressionDataset(Dataset):
def __init__(self, filename):
x = pd.read_csv(filename)
self.text = list(x["utterance"])
self.labels = list(x["sentiment"])
def __len__(self):
return len(self.labels)
def __getitem__(self, index):
return self.text[index], self.labels[index]
def collate_fn(self, data):
dat = pd.DataFrame(data)
return [dat[i].tolist() for i in dat]
def RegressionLoader(filename, batch_size, shuffle):
dataset = RegressionDataset(filename)
loader = DataLoader(dataset, shuffle=shuffle, batch_size=batch_size, collate_fn=dataset.collate_fn)
return loader
class ClassificationDataset(Dataset):
def __init__(self, filename):
x = pd.read_csv(filename)
self.context = list(x["seeker_post"])
self.response = list(x["response_post"])
self.labels = list(x["label"])
def __len__(self):
return len(self.labels)
def __getitem__(self, index):
return self.context[index], self.response[index], self.labels[index]
def collate_fn(self, data):
dat = pd.DataFrame(data)
return [dat[i].tolist() for i in dat]
def ClassificationLoader(filename, batch_size, shuffle):
dataset = ClassificationDataset(filename)
loader = DataLoader(dataset, shuffle=shuffle, batch_size=batch_size, collate_fn=dataset.collate_fn)
return loader
class EmpatheticDialogues(Dataset):
def __init__(self, filename, cache="./.cache"):
if cache:
cs = hashlib.md5(open(filename, "rb").read()).hexdigest()
cache_file = f"{cache}/{cs}"
if os.path.isfile(cache_file):
with open(cache_file, "rb") as f:
self.data = pickle.load(f)
print(f"Loaded data from {filename} cache")
return
data = pd.read_csv(filename, quoting=0).drop(columns=["history"])
conversations = data["conv_id"].unique().tolist()
self.data = []
print(f"Loading data from {filename}")
for conv_id in tqdm(conversations):
conv = data.query(f'conv_id == "{conv_id}"').sort_values("utterance_idx")
context = []
for idx, utterance in enumerate(conv.iterrows()):
utterance = utterance[1]
curr_utterance = utterance["utterance"].replace("_comma_", ",")
if idx % 2 == 1:
self.data.append({
"conv_id": conv_id,
"emotion": utterance["context"],
"context": context[:idx+1],
"response": curr_utterance,
"exemplars": utterance["exemplars_empd_reddit"].split("ææ"),
"empathy1_labels": int(utterance["empathy_labels"]),
"empathy2_labels": int(utterance["empathy2_labels"]),
"empathy3_labels": int(utterance["empathy3_labels"]),
"sentiment": utterance["sentiment"]
})
context.append(curr_utterance)
if cache:
if not os.path.isdir(cache):
os.mkdir(cache)
with open(cache_file, "wb") as f:
pickle.dump(self.data, f)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
def collate_fn(self, data):
dat = pd.DataFrame(data)
return [dat[i].tolist() for i in dat]
def MainDataLoader(filename, batch_size, shuffle, cache="./.cache"):
dataset = EmpatheticDialogues(filename, cache=cache)
loader = DataLoader(dataset, shuffle=shuffle, batch_size=batch_size, collate_fn=dataset.collate_fn)
return loader