-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathdata.py
241 lines (219 loc) · 7.94 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import numpy as np
import os
import glob
import cv2
from libtiff import TIFF
class myAugmentation(object):
"""
一个用于图像增强的类:
首先:分别读取训练的图片和标签,然后将图片和标签合并用于下一个阶段使用
然后:使用Keras的预处理来增强图像
最后:将增强后的图片分解开,分为训练图片和训练标签
"""
def __init__(self, train_path="train", label_path="label", merge_path="merge", aug_merge_path="aug_merge", aug_train_path="aug_train", aug_label_path="aug_label", img_type="tif"):
"""
使用glob从路径中得到所有的“.img_type”文件,初始化类:__init__()
"""
self.train_imgs = glob.glob(train_path+"/*."+img_type)
self.label_imgs = glob.glob(label_path+"/*."+img_type)
self.train_path = train_path
self.label_path = label_path
self.merge_path = merge_path
self.img_type = img_type
self.aug_merge_path = aug_merge_path
self.aug_train_path = aug_train_path
self.aug_label_path = aug_label_path
self.slices = len(self.train_imgs)
self.datagen = ImageDataGenerator(
rotation_range=0.2,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05,
zoom_range=0.05,
horizontal_flip=True,
fill_mode='nearest')
def Augmentation(self):
"""
Start augmentation.....
"""
trains = self.train_imgs
labels = self.label_imgs
path_train = self.train_path
path_label = self.label_path
path_merge = self.merge_path
imgtype = self.img_type
path_aug_merge = self.aug_merge_path
if len(trains) != len(labels) or len(trains) == 0 or len(trains) == 0:
print ("trains can't match labels")
return 0
for i in range(len(trains)):
img_t = load_img(path_train+"/"+str(i)+"."+imgtype)
img_l = load_img(path_label+"/"+str(i)+"."+imgtype)
x_t = img_to_array(img_t)
x_l = img_to_array(img_l)
x_t[:,:,2] = x_l[:,:,0]
img_tmp = array_to_img(x_t)
img_tmp.save(path_merge+"/"+str(i)+"."+imgtype)
img = x_t
img = img.reshape((1,) + img.shape)
savedir = path_aug_merge + "/" + str(i)
if not os.path.lexists(savedir):
os.mkdir(savedir)
self.doAugmentate(img, savedir, str(i))
def doAugmentate(self, img, save_to_dir, save_prefix, batch_size=1, save_format='tif', imgnum=30):
# 增强一张图片的方法
"""
augmentate one image
"""
datagen = self.datagen
i = 0
for batch in datagen.flow(img,
batch_size=batch_size,
save_to_dir=save_to_dir,
save_prefix=save_prefix,
save_format=save_format):
i += 1
if i > imgnum:
break
def splitMerge(self):
# 将合在一起的图片分开
"""
split merged image apart
"""
path_merge = self.aug_merge_path
path_train = self.aug_train_path
path_label = self.aug_label_path
for i in range(self.slices):
path = path_merge + "/" + str(i)
train_imgs = glob.glob(path+"/*."+self.img_type)
savedir = path_train + "/" + str(i)
if not os.path.lexists(savedir):
os.mkdir(savedir)
savedir = path_label + "/" + str(i)
if not os.path.lexists(savedir):
os.mkdir(savedir)
for imgname in train_imgs:
midname = imgname[imgname.rindex("/")+1:imgname.rindex("."+self.img_type)]
img = cv2.imread(imgname)
img_train = img[:,:,2] #cv2 read image rgb->bgr
img_label = img[:,:,0]
cv2.imwrite(path_train+"/"+str(i)+"/"+midname+"_train"+"."+self.img_type,img_train)
cv2.imwrite(path_label+"/"+str(i)+"/"+midname+"_label"+"."+self.img_type,img_label)
def splitTransform(self):
# 拆分透视变换后的图像
"""
split perspective transform images
"""
#path_merge = "transform"
#path_train = "transform/data/"
#path_label = "transform/label/"
path_merge = "deform/deform_norm2"
path_train = "deform/train/"
path_label = "deform/label/"
train_imgs = glob.glob(path_merge+"/*."+self.img_type)
for imgname in train_imgs:
midname = imgname[imgname.rindex("/")+1:imgname.rindex("."+self.img_type)]
img = cv2.imread(imgname)
img_train = img[:,:,2]#cv2 read image rgb->bgr
img_label = img[:,:,0]
cv2.imwrite(path_train+midname+"."+self.img_type,img_train)
cv2.imwrite(path_label+midname+"."+self.img_type,img_label)
class dataProcess(object):
def __init__(self, out_rows, out_cols, data_path = "../deform/train", label_path = "../deform/label", test_path = "../test", npy_path = "../npydata", img_type = "tif"):
# 数据处理类,初始化
self.out_rows = out_rows
self.out_cols = out_cols
self.data_path = data_path
self.label_path = label_path
self.img_type = img_type
self.test_path = test_path
self.npy_path = npy_path
# 创建训练数据
def create_train_data(self):
i = 0
print('-'*30)
print('Creating training images...')
print('-'*30)
imgs = glob.glob(self.data_path+"/*."+self.img_type)
print(len(imgs))
imgdatas = np.ndarray((len(imgs),self.out_rows,self.out_cols,1), dtype=np.uint8)
imglabels = np.ndarray((len(imgs),self.out_rows,self.out_cols,1), dtype=np.uint8)
for imgname in imgs:
midname = imgname[imgname.rindex("/")+1:]
img = load_img(self.data_path + "/" + midname,grayscale = True)
label = load_img(self.label_path + "/" + midname,grayscale = True)
img = img_to_array(img)
label = img_to_array(label)
#img = cv2.imread(self.data_path + "/" + midname,cv2.IMREAD_GRAYSCALE)
#label = cv2.imread(self.label_path + "/" + midname,cv2.IMREAD_GRAYSCALE)
#img = np.array([img])
#label = np.array([label])
imgdatas[i] = img
imglabels[i] = label
if i % 100 == 0:
print('Done: {0}/{1} images'.format(i, len(imgs)))
i += 1
print('loading done')
np.save(self.npy_path + '/imgs_train.npy', imgdatas)
np.save(self.npy_path + '/imgs_mask_train.npy', imglabels)
print('Saving to .npy files done.')
# 创建测试数据
def create_test_data(self):
i = 0
print('-'*30)
print('Creating test images...')
print('-'*30)
imgs = glob.glob(self.test_path+"/*."+self.img_type)
print(len(imgs))
imgdatas = np.ndarray((len(imgs),self.out_rows,self.out_cols,1), dtype=np.uint8)
for imgname in imgs:
midname = imgname[imgname.rindex("/")+1:]
img = load_img(self.test_path + "/" + midname,grayscale = True)
img = img_to_array(img)
#img = cv2.imread(self.test_path + "/" + midname,cv2.IMREAD_GRAYSCALE)
#img = np.array([img])
imgdatas[i] = img
i += 1
print('loading done')
np.save(self.npy_path + '/imgs_test.npy', imgdatas)
print('Saving to imgs_test.npy files done.')
# 加载训练图片与mask
def load_train_data(self):
print('-'*30)
print('load train images...')
print('-'*30)
imgs_train = np.load(self.npy_path+"/imgs_train.npy")
imgs_mask_train = np.load(self.npy_path+"/imgs_mask_train.npy")
imgs_train = imgs_train.astype('float32')
imgs_mask_train = imgs_mask_train.astype('float32')
imgs_train /= 255
mean = imgs_train.mean(axis = 0)
imgs_train -= mean
imgs_mask_train /= 255
# 做一个阈值处理,输出的概率值大于0.5的就认为是对象,否则认为是背景
imgs_mask_train[imgs_mask_train > 0.5] = 1
imgs_mask_train[imgs_mask_train <= 0.5] = 0
return imgs_train,imgs_mask_train
# 加载测试图片
def load_test_data(self):
print('-'*30)
print('load test images...')
print('-'*30)
imgs_test = np.load(self.npy_path+"/imgs_test.npy")
imgs_test = imgs_test.astype('float32')
imgs_test /= 255
mean = imgs_test.mean(axis = 0)
imgs_test -= mean
return imgs_test
if __name__ == "__main__":
# 以下注释掉的部分为数据增强代码,通过他们可以将数据进行增强
#aug = myAugmentation()
#aug.Augmentation()
#aug.splitMerge()
#aug.splitTransform()
mydata = dataProcess(512,512)
mydata.create_train_data()
mydata.create_test_data()
imgs_train,imgs_mask_train = mydata.load_train_data()
print (imgs_train.shape,imgs_mask_train.shape)