Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can i train model from Output layer ? #9

Open
yusufani opened this issue Feb 11, 2020 · 0 comments
Open

Can i train model from Output layer ? #9

yusufani opened this issue Feb 11, 2020 · 0 comments

Comments

@yusufani
Copy link

Hi , I am currently doing some experiments to increase the accuracy of the model. As you know, we have a 1024 lenght array before making a class prediction. I got that array , made some manipulation and created 1024 lenght arrays . I want to continue the training process on the pre-trained model with 1024 lenght arrays but I couldn't find how I could do it. Can you help me ?

    conv1_filter = tf.Variable(tf.truncated_normal(shape=[3, 3, 3, 64], mean=0, stddev=0.08))
    conv2_filter = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 128], mean=0, stddev=0.08))
    conv3_filter = tf.Variable(tf.truncated_normal(shape=[5, 5, 128, 256], mean=0, stddev=0.08))
    conv4_filter = tf.Variable(tf.truncated_normal(shape=[5, 5, 256, 512], mean=0, stddev=0.08))

    # 1, 2
    conv1 = tf.nn.conv2d(x, conv1_filter, strides=[1,1,1,1], padding='SAME')
    conv1 = tf.nn.relu(conv1)
    conv1_pool = tf.nn.max_pool(conv1, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    conv1_bn = tf.layers.batch_normalization(conv1_pool)

    # 3, 4
    conv2 = tf.nn.conv2d(conv1_bn, conv2_filter, strides=[1,1,1,1], padding='SAME')
    conv2 = tf.nn.relu(conv2)
    conv2_pool = tf.nn.max_pool(conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')    
    conv2_bn = tf.layers.batch_normalization(conv2_pool)
  
    # 5, 6
    conv3 = tf.nn.conv2d(conv2_bn, conv3_filter, strides=[1,1,1,1], padding='SAME')
    conv3 = tf.nn.relu(conv3)
    conv3_pool = tf.nn.max_pool(conv3, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')  
    conv3_bn = tf.layers.batch_normalization(conv3_pool)
    
    # 7, 8
    conv4 = tf.nn.conv2d(conv3_bn, conv4_filter, strides=[1,1,1,1], padding='SAME')
    conv4 = tf.nn.relu(conv4)
    conv4_pool = tf.nn.max_pool(conv4, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    conv4_bn = tf.layers.batch_normalization(conv4_pool)
    
    # 9
    flat = tf.contrib.layers.flatten(conv4_bn)
    flat =   tf.identity(flat, name='flat')

    # 10
    full1 = tf.contrib.layers.fully_connected(inputs=flat, num_outputs=128, activation_fn=tf.nn.relu)
    full1 = tf.nn.dropout(full1, keep_prob)
    full1 = tf.layers.batch_normalization(full1)
    full1 = tf.identity(full1, name='full1')
    
    # 11
    full2 = tf.contrib.layers.fully_connected(inputs=full1, num_outputs=256, activation_fn=tf.nn.relu)
    full2 = tf.nn.dropout(full2, keep_prob)
    full2 = tf.layers.batch_normalization(full2)
    full2 = tf.identity(full2, name='full2')
    
    # 12
    full3 = tf.contrib.layers.fully_connected(inputs=full2, num_outputs=512, activation_fn=tf.nn.relu )
    full3 = tf.nn.dropout(full3, keep_prob)
    full3 = tf.layers.batch_normalization(full3)
    full3 = tf.identity(full3, name='full3')    
    
    # 13
    full4 = tf.contrib.layers.fully_connected(inputs=full3, num_outputs=1024, activation_fn=tf.nn.relu)
    full4 = tf.nn.dropout(full4, keep_prob)
    full4 = tf.layers.batch_normalization(full4)  
    full4 = tf.identity(full4, name='full4')     
    
    # 14
    out = tf.contrib.layers.fully_connected(inputs=full4, num_outputs=10, activation_fn=None)
    out = tf.identity(out,name="out")
    return out

You can see the names of the layers in the code.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant