From 3d2c8dccf356da842f39bb114848c21a357e81f3 Mon Sep 17 00:00:00 2001 From: Rakshit Kumar Singh Date: Fri, 12 Jan 2024 16:32:02 +0000 Subject: [PATCH] minor fixes --- new-website/utils/tutorials/build_pdf_book.py | 2 +- new-website/utils/tutorials/contents.md | 88 +++++++++---------- 2 files changed, 45 insertions(+), 45 deletions(-) diff --git a/new-website/utils/tutorials/build_pdf_book.py b/new-website/utils/tutorials/build_pdf_book.py index 376d6e2e..1d45a176 100644 --- a/new-website/utils/tutorials/build_pdf_book.py +++ b/new-website/utils/tutorials/build_pdf_book.py @@ -73,7 +73,7 @@ def merge_pdf_pages(a: List[str]): command = "pdfunite " for i in a: command = command + i + ' ' - os.system(command, "merged.pdf") + os.system(command + "merged.pdf") def compile_information_pages(): """Converts the Acknowledgent page and content page from diff --git a/new-website/utils/tutorials/contents.md b/new-website/utils/tutorials/contents.md index ee0f902b..0f919105 100644 --- a/new-website/utils/tutorials/contents.md +++ b/new-website/utils/tutorials/contents.md @@ -1,45 +1,45 @@ # Conents -About_nODE_Using_Torchdiffeq_in_Deepchem -Advanced_Model_Training -Advanced_model_training_using_hyperopt -An_Introduction_To_MoleculeNet -Atomic_Contributions_for_Molecules -Conditional_Generative_Adversarial_Networks -Creating_Models_with_TensorFlow_and_PyTorch -Creating_a_high_fidelity_model_from_experimental_data -DeepQMC_tutorial -Deep_probabilistic_analysis_of_single-cell_omics_data -Exploring_Quantum_Chemistry_with_GDB1k -Generating_molecules_with_MolGAN -Going_Deeper_on_Molecular_Featurizations -Hierarchial_Moelcular_Generation_with_HierVAE -Interactive_Model_Evaluation_with_Trident_Chemwidgets -Introducing_JaxModel_and_PINNModel -Introduction_To_Material_Science -Introduction_to_Bioinformatics -Introduction_to_Equivariance -Introduction_to_GROVER -Introduction_to_Gaussian_Processes -Introduction_to_Graph_Convolutions -Introduction_to_Model_Interpretability -Introduction_to_Molecular_Attention_Transformer -Large_Scale_Chemical_Screens -Learning_Unsupervised_Embeddings_for_Molecules -Modeling_Protein_Ligand_Interactions -Modeling_Protein_Ligand_Interactions_With_Atomic_Convolutions -Molecular_Fingerprints -Multisequence_Alignments -Physics_Informed_Neural_Networks -Protein_Deep_Learning -Putting_Multitask_Learning_to_Work -PytorchLightning_Integration -Scanpy -The_Basic_Tools_of_the_Deep_Life_Sciences -Training_a_Generative_Adversarial_Network_on_MNIST -Training_a_Normalizing_Flow_on_QM9 -Training_an_Exchange_Correlation_Functional_using_Deepchem -Transfer_Learning_With_ChemBERTa_Transformers -Uncertainty_In_Deep_Learning -Using_Reinforcement_Learning_to_Play_Pong -Working_With_Datasets -Working_With_Splitters +- About_nODE_Using_Torchdiffeq_in_Deepchem +- Advanced_Model_Training +- Advanced_model_training_using_hyperopt +- An_Introduction_To_MoleculeNet +- Atomic_Contributions_for_Molecules +- Conditional_Generative_Adversarial_Networks +- Creating_Models_with_TensorFlow_and_PyTorch +- Creating_a_high_fidelity_model_from_experimental_data +- DeepQMC_tutorial +- Deep_probabilistic_analysis_of_single-cell_omics_data +- Exploring_Quantum_Chemistry_with_GDB1k +- Generating_molecules_with_MolGAN +- Going_Deeper_on_Molecular_Featurizations +- Hierarchial_Moelcular_Generation_with_HierVAE +- Interactive_Model_Evaluation_with_Trident_Chemwidgets +- Introducing_JaxModel_and_PINNModel +- Introduction_To_Material_Science +- Introduction_to_Bioinformatics +- Introduction_to_Equivariance +- Introduction_to_GROVER +- Introduction_to_Gaussian_Processes +- Introduction_to_Graph_Convolutions +- Introduction_to_Model_Interpretability +- Introduction_to_Molecular_Attention_Transformer +- Large_Scale_Chemical_Screens +- Learning_Unsupervised_Embeddings_for_Molecules +- Modeling_Protein_Ligand_Interactions +- Modeling_Protein_Ligand_Interactions_With_Atomic_Convolutions +- Molecular_Fingerprints +- Multisequence_Alignments +- Physics_Informed_Neural_Networks +- Protein_Deep_Learning +- Putting_Multitask_Learning_to_Work +- PytorchLightning_Integration +- Scanpy +- The_Basic_Tools_of_the_Deep_Life_Sciences +- Training_a_Generative_Adversarial_Network_on_MNIST +- Training_a_Normalizing_Flow_on_QM9 +- Training_an_Exchange_Correlation_Functional_using_Deepchem +- Transfer_Learning_With_ChemBERTa_Transformers +- Uncertainty_In_Deep_Learning +- Using_Reinforcement_Learning_to_Play_Pong +- Working_With_Datasets +- Working_With_Splitters