-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathexperiments_psd.py
executable file
·91 lines (69 loc) · 3.19 KB
/
experiments_psd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python3
# coding: utf-8
"""
Script to run the baseline experiment:
SVM classification with power spectral densities (PSD) features.
"""
import os
import sys
import numpy as np
from deepsphere import experiment_helper
from grid import pgrid
def single_experiment(sigma, order, sigma_noise, path):
"""Run as experiment.
Check the notebook `part_sphere.ipynb` to get more insides about this code.
"""
print('Solve the PSD problem for sigma {}, order {}, noise {}'.format(sigma, order, sigma_noise), flush=True)
Nside = 1024
EXP_NAME = '40sim_{}sides_{}arcmin_{}noise_{}order'.format(
Nside, sigma, sigma_noise, order)
x_raw_train, labels_raw_train, x_raw_std = experiment_helper.get_training_data(sigma, order)
x_raw_test, labels_test, _ = experiment_helper.get_testing_data(sigma, order, sigma_noise, x_raw_std)
if order==4:
augmentation = 4
else:
augmentation = 10
ret = experiment_helper.data_preprossing(x_raw_train, labels_raw_train, x_raw_test, sigma_noise, feature_type='psd', augmentation=augmentation)
features_train, labels_train, features_validation, labels_validation, features_test = ret
ntrain = len(features_train)//augmentation
nsamples = list(ntrain // 12 * np.linspace(1, 6, num=6).astype(np.int))
nsamples += list(ntrain // 2 * np.linspace(1, augmentation*2, num=40).astype(np.int))
err_train = np.zeros(shape=[len(nsamples)])
err_validation = np.zeros(shape=[len(nsamples)])
err_train[:] = np.nan
err_validation[:] = np.nan
for i, n in enumerate(nsamples):
print('{} Solve it for {} samples'.format(i, n), flush=True)
err_train[i], err_validation[i], _ = experiment_helper.err_svc_linear(
features_train[:n], labels_train[:n], features_validation,
labels_validation)
e_train, e_validation, C = experiment_helper.err_svc_linear(
features_train, labels_train, features_validation, labels_validation)
print('The validation error is {}%'.format(e_validation * 100), flush=True)
# Cheating in favor of SVM
e_train, e_test = experiment_helper.err_svc_linear_single(C,
features_train, labels_train, features_test, labels_test)
print('The test error is {}%'.format(e_test * 100), flush=True)
np.savez(path + EXP_NAME, [nsamples, err_train, err_validation, e_test])
return e_test
if __name__ == '__main__':
if len(sys.argv) > 1:
sigma = int(sys.argv[1])
order = int(sys.argv[2])
sigma_noise = float(sys.argv[3])
grid = [(sigma, order, sigma_noise)]
else:
grid = pgrid()
path = 'results/psd/'
os.makedirs(path, exist_ok=True)
for sigma, order, sigma_noise in grid:
print('Launch experiment for sigma={}, order={}, noise={}'.format(sigma, order, sigma_noise))
res = single_experiment(sigma, order, sigma_noise, path)
filepath = os.path.join(path, 'psd_results_list_sigma{}'.format(sigma))
new_data = [order, sigma_noise, res]
if os.path.isfile(filepath+'.npz'):
results = np.load(filepath+'.npz')['data'].tolist()
else:
results = []
results.append(new_data)
np.savez(filepath, data=results)