-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
131 lines (105 loc) · 6.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from environment import ContextualEnvironment
from policies import KLUCBSegmentPolicy, RandomPolicy, ExploreThenCommitSegmentPolicy, EpsilonGreedySegmentPolicy, TSSegmentPolicy, LinearTSPolicy
import argparse
import json
import logging
import numpy as np
import pandas as pd
import time
# List of implemented policies
def set_policies(policies_name, user_segment, user_features, n_playlists):
# Please see section 3.3 of RecSys paper for a description of policies
POLICIES_SETTINGS = {
'random' : RandomPolicy(n_playlists),
'etc-seg-explore' : ExploreThenCommitSegmentPolicy(user_segment, n_playlists, min_n = 100, cascade_model = True),
'etc-seg-exploit' : ExploreThenCommitSegmentPolicy(user_segment, n_playlists, min_n = 20, cascade_model = True),
'epsilon-greedy-explore' : EpsilonGreedySegmentPolicy(user_segment, n_playlists, epsilon = 0.1, cascade_model = True),
'epsilon-greedy-exploit' : EpsilonGreedySegmentPolicy(user_segment, n_playlists, epsilon = 0.01, cascade_model = True),
'kl-ucb-seg' : KLUCBSegmentPolicy(user_segment, n_playlists, cascade_model = True),
'ts-seg-naive' : TSSegmentPolicy(user_segment, n_playlists, alpha_zero = 1, beta_zero = 1, cascade_model = True),
'ts-seg-pessimistic' : TSSegmentPolicy(user_segment, n_playlists, alpha_zero = 1, beta_zero = 99, cascade_model = True),
'ts-lin-naive' : LinearTSPolicy(user_features, n_playlists, bias = 0.0, cascade_model = True),
'ts-lin-pessimistic' : LinearTSPolicy(user_features, n_playlists, bias = -5.0, cascade_model = True),
# Versions of epsilon-greedy-explore and ts-seg-pessimistic WITHOUT cascade model
'epsilon-greedy-explore-no-cascade' : EpsilonGreedySegmentPolicy(user_segment, n_playlists, epsilon = 0.1, cascade_model = False),
'ts-seg-pessimistic-no-cascade' : TSSegmentPolicy(user_segment, n_playlists, alpha_zero = 1, beta_zero = 99, cascade_model = False)
}
return [POLICIES_SETTINGS[name] for name in policies_name]
if __name__ == "__main__":
# Arguments
parser = argparse.ArgumentParser()
parser.add_argument("--users_path", type = str, default = "data/user_features.csv", required = False,
help = "Path to user features file")
parser.add_argument("--playlists_path", type = str, default = "data/playlist_features.csv", required = False,
help = "Path to playlist features file")
parser.add_argument("--output_path", type = str, default = "results.json", required = False,
help = "Path to json file to save regret values")
parser.add_argument("--policies", type = str, default = "random,ts-seg-naive", required = False,
help = "Bandit algorithms to evaluate, separated by commas")
parser.add_argument("--n_recos", type = int, default = 12, required = False,
help = "Number of slots L in the carousel i.e. number of recommendations to provide")
parser.add_argument("--l_init", type = int, default = 3, required = False,
help = "Number of slots L_init initially visible in the carousel")
parser.add_argument("--n_users_per_round", type = int, default = 20000, required = False,
help = "Number of users randomly selected (with replacement) per round")
parser.add_argument("--n_rounds", type = int, default = 100, required = False,
help = "Number of simulated rounds")
parser.add_argument("--print_every", type = int, default = 10, required = False,
help = "Print cumulative regrets every 'print_every' round")
args = parser.parse_args()
logging.basicConfig(level = logging.INFO)
logger = logging.getLogger(__name__)
if args.l_init > args.n_recos:
raise ValueError('l_init is larger than n_recos')
# Data Loading and Preprocessing steps
logger.info("LOADING DATA")
logger.info("Loading playlist data")
playlists_df = pd.read_csv(args.playlists_path)
logger.info("Loading user data\n \n")
users_df = pd.read_csv(args.users_path)
n_users = len(users_df)
n_playlists = len(playlists_df)
n_recos = args.n_recos
print_every = args.print_every
user_features = np.array(users_df.drop(["segment"], axis = 1))
user_features = np.concatenate([user_features, np.ones((n_users,1))], axis = 1)
playlist_features = np.array(playlists_df)
user_segment = np.array(users_df.segment)
logger.info("SETTING UP SIMULATION ENVIRONMENT")
logger.info("for %d users, %d playlists, %d recommendations per carousel \n \n" % (n_users, n_playlists, n_recos))
cont_env = ContextualEnvironment(user_features, playlist_features, user_segment, n_recos)
logger.info("SETTING UP POLICIES")
logger.info("Policies to evaluate: %s \n \n" % (args.policies))
policies_name = args.policies.split(",")
policies = set_policies(policies_name, user_segment, user_features, n_playlists)
n_policies = len(policies)
n_users_per_round = args.n_users_per_round
n_rounds = args.n_rounds
overall_rewards = np.zeros((n_policies, n_rounds))
overall_optimal_reward = np.zeros(n_rounds)
# Simulations for Top-n_recos carousel-based playlist recommendations
logger.info("STARTING SIMULATIONS")
logger.info("for %d rounds, with %d users per round (randomly drawn with replacement)\n \n" % (n_rounds, n_users_per_round))
start_time = time.time()
for i in range(n_rounds):
# Select batch of n_users_per_round users
user_ids = np.random.choice(range(n_users), n_users_per_round)
overall_optimal_reward[i] = np.take(cont_env.th_rewards, user_ids).sum()
# Iterate over all policies
for j in range(n_policies):
# Compute n_recos recommendations
recos = policies[j].recommend_to_users_batch(user_ids, args.n_recos, args.l_init)
# Compute rewards
rewards = cont_env.simulate_batch_users_reward(batch_user_ids= user_ids, batch_recos=recos)
# Update policy based on rewards
policies[j].update_policy(user_ids, recos, rewards, args.l_init)
overall_rewards[j,i] = rewards.sum()
# Print info
if i == 0 or (i+1) % print_every == 0 or i+1 == n_rounds:
logger.info("Round: %d/%d. Elapsed time: %f sec." % (i+1, n_rounds, time.time() - start_time))
logger.info("Cumulative regrets: \n%s \n" % "\n".join([" %s : %s" % (policies_name[j], str(np.sum(overall_optimal_reward - overall_rewards[j]))) for j in range(n_policies)]))
# Save results
logger.info("Saving cumulative regrets in %s" % args.output_path)
cumulative_regrets = {policies_name[j] : list(np.cumsum(overall_optimal_reward - overall_rewards[j])) for j in range(n_policies)}
with open(args.output_path, 'w') as fp:
json.dump(cumulative_regrets, fp)