-
Notifications
You must be signed in to change notification settings - Fork 7
/
raymath.bi
998 lines (913 loc) · 34.6 KB
/
raymath.bi
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
#pragma once
#include once "crt/math.bi"
extern "C"
#define MatrixToFloat(mat) MatrixToFloatV(mat).v
#define Vector3ToFloat(vec) Vector3ToFloatV(vec).v
type float3
v(0 to 2) as single
end type
type float16
v(0 to 15) as single
end type
private function Clamp(value as single, min as single, max as single) as single
dim res as const single = iif(value < min, min, value)
return iif(res > max, max, res)
end function
private function Lerp(start as single, ends as single, amount as single) as single
return start + (amount * (ends - start))
end function
private function Vector2Zero() as Vector2
dim as Vector2 result = Vector2(0,0)
return result
end function
private function Vector2One() as Vector2
dim as Vector2 result = Vector2(1,1)
return result
end function
private function Vector2Add(v1 as Vector2, v2 as Vector2) as Vector2
dim as Vector2 result = Vector2(v1.x + v2.x, v1.y + v2.y)
return result
end function
private function Vector2Subtract(v1 as Vector2, v2 as Vector2) as Vector2
dim as Vector2 result = Vector2(v1.x - v2.x, v1.y - v2.y)
return result
end function
private function Vector2Length(v as Vector2) as single
dim result as single = sqrtf((v.x * v.x) + (v.y * v.y))
return result
end function
private function Vector2DotProduct(v1 as Vector2, v2 as Vector2) as single
dim result as single = (v1.x * v2.x) + (v1.y * v2.y)
return result
end function
private function Vector2Distance(v1 as Vector2, v2 as Vector2) as single
dim result as single = sqrtf(((v1.x - v2.x) * (v1.x - v2.x)) + ((v1.y - v2.y) * (v1.y - v2.y)))
return result
end function
private function Vector2Angle(v1 as Vector2, v2 as Vector2) as single
dim result as single = atan2f(v2.y - v1.y, v2.x - v1.x) * (180.0 / 3.14159265358979323846)
if result < 0 then
result += 360.0
end if
return result
end function
private function Vector2Scale(v as Vector2, scale as single) as Vector2
dim as Vector2 result = Vector2(v.x*scale, v.y*scale)
return result
end function
private function Vector2MultiplyV(v1 as Vector2, v2 as Vector2) as Vector2
dim as Vector2 result = Vector2(v1.x*v2.x, v1.y*v2.y)
return result
end function
private function Vector2Negate(v as Vector2) as Vector2
dim as Vector2 result = Vector2(-v.x, -v.y)
return result
end function
private function Vector2Divide(v as Vector2, div as single) as Vector2
dim as Vector2 result = Vector2(v.x/div, v.y/div)
return result
end function
private function Vector2DivideV(v1 as Vector2, v2 as Vector2) as Vector2
dim as Vector2 result = Vector2(v1.x/v2.x, v1.y/v2.y)
return result
end function
private function Vector2Normalize(v as Vector2) as Vector2
dim as Vector2 result = Vector2Divide(v, Vector2Length(v))
return result
end function
private function Vector2Lerp(v1 as Vector2, v2 as Vector2, amount as single) as Vector2
dim as Vector2 result
result.x = v1.x + (amount * (v2.x - v1.x))
result.y = v1.y + (amount * (v2.y - v1.y))
return result
end function
private function Vector2Rotate(v as Vector2, degs as single) as Vector2
dim rads as single = degs * (3.14159265358979323846 / 180.0)
dim as Vector2 result = Vector2(v.x * cos(rads) - v.y * sin(rads) , v.x * sin(rads) + v.y * cos(rads))
return result
end function
private function Vector3Zero() as Vector3
dim as Vector3 result = Vector3(0,0,0)
return result
end function
private function Vector3One() as Vector3
dim as Vector3 result = Vector3(1,1,1)
return result
end function
private function Vector3Add(v1 as Vector3, v2 as Vector3) as Vector3
dim as Vector3 result = Vector3(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z)
return result
end function
private function Vector3Subtract(v1 as Vector3, v2 as Vector3) as Vector3
dim as Vector3 result = Vector3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z)
return result
end function
private function Vector3Scale(v as Vector3, scalar as single) as Vector3
dim as Vector3 result = Vector3(v.x*scalar, v.y*scalar, v.z*scalar)
return result
end function
private function Vector3Multiply(v1 as Vector3, v2 as Vector3) as Vector3
dim as Vector3 result = Vector3(v1.x*v2.x, v1.y*v2.y, v1.z*v2.z)
return result
end function
private function Vector3CrossProduct(v1 as Vector3, v2 as Vector3) as Vector3
dim as Vector3 result = Vector3(v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x)
return result
end function
private function Vector3Perpendicular(v as Vector3) as Vector3
dim as Vector3 result
dim min as single = csng(fabs(v.x))
dim as Vector3 cardinalAxis = Vector3(1,0,0)
if fabs(v.y) < min then
min = csng(fabs(v.y))
dim as Vector3 tmp = Vector3(0,1,0)
cardinalAxis = tmp
end if
if fabs(v.z) < min then
dim as Vector3 tmp = Vector3(0,0,1)
cardinalAxis = tmp
end if
result = Vector3CrossProduct(v, cardinalAxis)
return result
end function
private function Vector3Length(v as const Vector3) as single
dim result as single = sqrtf(((v.x * v.x) + (v.y * v.y)) + (v.z * v.z))
return result
end function
private function Vector3DotProduct(v1 as Vector3, v2 as Vector3) as single
dim result as single = ((v1.x * v2.x) + (v1.y * v2.y)) + (v1.z * v2.z)
return result
end function
private function Vector3Distance(v1 as Vector3, v2 as Vector3) as single
dim dx as single = v2.x - v1.x
dim dy as single = v2.y - v1.y
dim dz as single = v2.z - v1.z
dim result as single = sqrtf(((dx * dx) + (dy * dy)) + (dz * dz))
return result
end function
private function Vector3Negate(v as Vector3) as Vector3
dim as Vector3 result = Vector3(-v.x, -v.y, -v.z)
return result
end function
private function Vector3Divide(v as Vector3, div as single) as Vector3
dim as Vector3 result = Vector3(v.x / div, v.y / div, v.z / div)
return result
end function
private function Vector3DivideV(v1 as Vector3, v2 as Vector3) as Vector3
dim as Vector3 result = Vector3(v1.x/v2.x, v1.y/v2.y, v1.z/v2.z)
return result
end function
private function Vector3Normalize(v as Vector3) as Vector3
dim as Vector3 result = v
dim length as single
dim ilength as single
length = Vector3Length(v)
if length = 0.0 then
length = 1.0
end if
ilength = 1.0 / length
result.x *= ilength
result.y *= ilength
result.z *= ilength
return result
end function
private sub Vector3OrthoNormalize(v1 as Vector3 ptr, v2 as Vector3 ptr)
(*v1) = Vector3Normalize(*v1)
dim as Vector3 vn = Vector3CrossProduct(*v1, *v2)
vn = Vector3Normalize(vn)
(*v2) = Vector3CrossProduct(vn, *v1)
end sub
private function Vector3Transform(v as Vector3, mat as Matrix) as Vector3
dim as Vector3 result
dim x as single = v.x
dim y as single = v.y
dim z as single = v.z
result.x = (((mat.m0 * x) + (mat.m4 * y)) + (mat.m8 * z)) + mat.m12
result.y = (((mat.m1 * x) + (mat.m5 * y)) + (mat.m9 * z)) + mat.m13
result.z = (((mat.m2 * x) + (mat.m6 * y)) + (mat.m10 * z)) + mat.m14
return result
end function
private function Vector3RotateByQuaternion(v as Vector3, q as Quaternion) as Vector3
dim as Vector3 result
result.x = ((v.x * ((((q.x * q.x) + (q.w * q.w)) - (q.y * q.y)) - (q.z * q.z))) + (v.y * (((2 * q.x) * q.y) - ((2 * q.w) * q.z)))) + (v.z * (((2 * q.x) * q.z) + ((2 * q.w) * q.y)))
result.y = ((v.x * (((2 * q.w) * q.z) + ((2 * q.x) * q.y))) + (v.y * ((((q.w * q.w) - (q.x * q.x)) + (q.y * q.y)) - (q.z * q.z)))) + (v.z * ((((-2) * q.w) * q.x) + ((2 * q.y) * q.z)))
result.z = ((v.x * ((((-2) * q.w) * q.y) + ((2 * q.x) * q.z))) + (v.y * (((2 * q.w) * q.x) + ((2 * q.y) * q.z)))) + (v.z * ((((q.w * q.w) - (q.x * q.x)) - (q.y * q.y)) + (q.z * q.z)))
return result
end function
private function Vector3Lerp(v1 as Vector3, v2 as Vector3, amount as single) as Vector3
dim as Vector3 result
result.x = v1.x + (amount * (v2.x - v1.x))
result.y = v1.y + (amount * (v2.y - v1.y))
result.z = v1.z + (amount * (v2.z - v1.z))
return result
end function
private function Vector3Reflect(v as Vector3, normal as Vector3) as Vector3
dim as Vector3 result
dim dotProduct as single = Vector3DotProduct(v, normal)
result.x = v.x - ((2.0 * normal.x) * dotProduct)
result.y = v.y - ((2.0 * normal.y) * dotProduct)
result.z = v.z - ((2.0 * normal.z) * dotProduct)
return result
end function
private function Vector3Min(v1 as Vector3, v2 as Vector3) as Vector3
dim as Vector3 result
result.x = fminf(v1.x, v2.x)
result.y = fminf(v1.y, v2.y)
result.z = fminf(v1.z, v2.z)
return result
end function
private function Vector3Max(v1 as Vector3, v2 as Vector3) as Vector3
dim as Vector3 result
result.x = fmaxf(v1.x, v2.x)
result.y = fmaxf(v1.y, v2.y)
result.z = fmaxf(v1.z, v2.z)
return result
end function
private function Vector3Barycenter(p as Vector3, a as Vector3, b as Vector3, c as Vector3) as Vector3
dim as Vector3 v0 = Vector3Subtract(b, a)
dim as Vector3 v1 = Vector3Subtract(c, a)
dim as Vector3 v2 = Vector3Subtract(p, a)
dim d00 as single = Vector3DotProduct(v0, v0)
dim d01 as single = Vector3DotProduct(v0, v1)
dim d11 as single = Vector3DotProduct(v1, v1)
dim d20 as single = Vector3DotProduct(v2, v0)
dim d21 as single = Vector3DotProduct(v2, v1)
dim denom as single = (d00 * d11) - (d01 * d01)
dim as Vector3 result
result.y = ((d11 * d20) - (d01 * d21)) / denom
result.z = ((d00 * d21) - (d01 * d20)) / denom
result.x = 1.0 - (result.z + result.y)
return result
end function
private function Vector3ToFloatV(v as Vector3) as float3
dim buffer as float3
buffer.v(0) = v.x
buffer.v(1) = v.y
buffer.v(2) = v.z
return buffer
end function
private function MatrixDeterminant(mat as Matrix) as single
dim result as single
dim a00 as single = mat.m0
dim a01 as single = mat.m1
dim a02 as single = mat.m2
dim a03 as single = mat.m3
dim a10 as single = mat.m4
dim a11 as single = mat.m5
dim a12 as single = mat.m6
dim a13 as single = mat.m7
dim a20 as single = mat.m8
dim a21 as single = mat.m9
dim a22 as single = mat.m10
dim a23 as single = mat.m11
dim a30 as single = mat.m12
dim a31 as single = mat.m13
dim a32 as single = mat.m14
dim a33 as single = mat.m15
result = (((((((((((((((((((((((((a30 * a21) * a12) * a03) - (((a20 * a31) * a12) * a03)) - (((a30 * a11) * a22) * a03)) + (((a10 * a31) * a22) * a03)) + (((a20 * a11) * a32) * a03)) - (((a10 * a21) * a32) * a03)) - (((a30 * a21) * a02) * a13)) + (((a20 * a31) * a02) * a13)) + (((a30 * a01) * a22) * a13)) - (((a00 * a31) * a22) * a13)) - (((a20 * a01) * a32) * a13)) + (((a00 * a21) * a32) * a13)) + (((a30 * a11) * a02) * a23)) - (((a10 * a31) * a02) * a23)) - (((a30 * a01) * a12) * a23)) + (((a00 * a31) * a12) * a23)) + (((a10 * a01) * a32) * a23)) - (((a00 * a11) * a32) * a23)) - (((a20 * a11) * a02) * a33)) + (((a10 * a21) * a02) * a33)) + (((a20 * a01) * a12) * a33)) - (((a00 * a21) * a12) * a33)) - (((a10 * a01) * a22) * a33)) + (((a00 * a11) * a22) * a33)
return result
end function
private function MatrixTrace(mat as Matrix) as single
dim result as single = ((mat.m0 + mat.m5) + mat.m10) + mat.m15
return result
end function
private function MatrixTranspose(mat as Matrix) as Matrix
dim as Matrix result
result.m0 = mat.m0
result.m1 = mat.m4
result.m2 = mat.m8
result.m3 = mat.m12
result.m4 = mat.m1
result.m5 = mat.m5
result.m6 = mat.m9
result.m7 = mat.m13
result.m8 = mat.m2
result.m9 = mat.m6
result.m10 = mat.m10
result.m11 = mat.m14
result.m12 = mat.m3
result.m13 = mat.m7
result.m14 = mat.m11
result.m15 = mat.m15
return result
end function
private function MatrixInvert(mat as Matrix) as Matrix
dim as Matrix result
dim a00 as single = mat.m0
dim a01 as single = mat.m1
dim a02 as single = mat.m2
dim a03 as single = mat.m3
dim a10 as single = mat.m4
dim a11 as single = mat.m5
dim a12 as single = mat.m6
dim a13 as single = mat.m7
dim a20 as single = mat.m8
dim a21 as single = mat.m9
dim a22 as single = mat.m10
dim a23 as single = mat.m11
dim a30 as single = mat.m12
dim a31 as single = mat.m13
dim a32 as single = mat.m14
dim a33 as single = mat.m15
dim b00 as single = (a00 * a11) - (a01 * a10)
dim b01 as single = (a00 * a12) - (a02 * a10)
dim b02 as single = (a00 * a13) - (a03 * a10)
dim b03 as single = (a01 * a12) - (a02 * a11)
dim b04 as single = (a01 * a13) - (a03 * a11)
dim b05 as single = (a02 * a13) - (a03 * a12)
dim b06 as single = (a20 * a31) - (a21 * a30)
dim b07 as single = (a20 * a32) - (a22 * a30)
dim b08 as single = (a20 * a33) - (a23 * a30)
dim b09 as single = (a21 * a32) - (a22 * a31)
dim b10 as single = (a21 * a33) - (a23 * a31)
dim b11 as single = (a22 * a33) - (a23 * a32)
dim invDet as single = 1.0 / ((((((b00 * b11) - (b01 * b10)) + (b02 * b09)) + (b03 * b08)) - (b04 * b07)) + (b05 * b06))
result.m0 = (((a11 * b11) - (a12 * b10)) + (a13 * b09)) * invDet
result.m1 = ((((-a01) * b11) + (a02 * b10)) - (a03 * b09)) * invDet
result.m2 = (((a31 * b05) - (a32 * b04)) + (a33 * b03)) * invDet
result.m3 = ((((-a21) * b05) + (a22 * b04)) - (a23 * b03)) * invDet
result.m4 = ((((-a10) * b11) + (a12 * b08)) - (a13 * b07)) * invDet
result.m5 = (((a00 * b11) - (a02 * b08)) + (a03 * b07)) * invDet
result.m6 = ((((-a30) * b05) + (a32 * b02)) - (a33 * b01)) * invDet
result.m7 = (((a20 * b05) - (a22 * b02)) + (a23 * b01)) * invDet
result.m8 = (((a10 * b10) - (a11 * b08)) + (a13 * b06)) * invDet
result.m9 = ((((-a00) * b10) + (a01 * b08)) - (a03 * b06)) * invDet
result.m10 = (((a30 * b04) - (a31 * b02)) + (a33 * b00)) * invDet
result.m11 = ((((-a20) * b04) + (a21 * b02)) - (a23 * b00)) * invDet
result.m12 = ((((-a10) * b09) + (a11 * b07)) - (a12 * b06)) * invDet
result.m13 = (((a00 * b09) - (a01 * b07)) + (a02 * b06)) * invDet
result.m14 = ((((-a30) * b03) + (a31 * b01)) - (a32 * b00)) * invDet
result.m15 = (((a20 * b03) - (a21 * b01)) + (a22 * b00)) * invDet
return result
end function
private function MatrixNormalize(mat as Matrix) as Matrix
dim as Matrix result
dim det as single = MatrixDeterminant(mat)
result.m0 = mat.m0 / det
result.m1 = mat.m1 / det
result.m2 = mat.m2 / det
result.m3 = mat.m3 / det
result.m4 = mat.m4 / det
result.m5 = mat.m5 / det
result.m6 = mat.m6 / det
result.m7 = mat.m7 / det
result.m8 = mat.m8 / det
result.m9 = mat.m9 / det
result.m10 = mat.m10 / det
result.m11 = mat.m11 / det
result.m12 = mat.m12 / det
result.m13 = mat.m13 / det
result.m14 = mat.m14 / det
result.m15 = mat.m15 / det
return result
end function
private function MatrixIdentity() as Matrix
dim as Matrix result
result.m0 = 1
result.m1 = 0
result.m2 = 0
result.m3 = 0
result.m4 = 0
result.m5 = 1
result.m6 = 0
result.m7 = 0
result.m8 = 0
result.m9 = 0
result.m10 = 1
result.m11 = 0
result.m12 = 0
result.m13 = 0
result.m14 = 0
result.m15 = 1
return result
end function
private function MatrixAdd(lefts as Matrix, rights as Matrix) as Matrix
dim as Matrix result = MatrixIdentity()
result.m0 = lefts.m0 + rights.m0
result.m1 = lefts.m1 + rights.m1
result.m2 = lefts.m2 + rights.m2
result.m3 = lefts.m3 + rights.m3
result.m4 = lefts.m4 + rights.m4
result.m5 = lefts.m5 + rights.m5
result.m6 = lefts.m6 + rights.m6
result.m7 = lefts.m7 + rights.m7
result.m8 = lefts.m8 + rights.m8
result.m9 = lefts.m9 + rights.m9
result.m10 = lefts.m10 + rights.m10
result.m11 = lefts.m11 + rights.m11
result.m12 = lefts.m12 + rights.m12
result.m13 = lefts.m13 + rights.m13
result.m14 = lefts.m14 + rights.m14
result.m15 = lefts.m15 + rights.m15
return result
end function
private function MatrixSubtract(lefts as Matrix, rights as Matrix) as Matrix
dim as Matrix result = MatrixIdentity()
result.m0 = lefts.m0 - rights.m0
result.m1 = lefts.m1 - rights.m1
result.m2 = lefts.m2 - rights.m2
result.m3 = lefts.m3 - rights.m3
result.m4 = lefts.m4 - rights.m4
result.m5 = lefts.m5 - rights.m5
result.m6 = lefts.m6 - rights.m6
result.m7 = lefts.m7 - rights.m7
result.m8 = lefts.m8 - rights.m8
result.m9 = lefts.m9 - rights.m9
result.m10 = lefts.m10 - rights.m10
result.m11 = lefts.m11 - rights.m11
result.m12 = lefts.m12 - rights.m12
result.m13 = lefts.m13 - rights.m13
result.m14 = lefts.m14 - rights.m14
result.m15 = lefts.m15 - rights.m15
return result
end function
private function MatrixTranslate(x as single, y as single, z as single) as Matrix
dim as Matrix result
result.m0 = 1
result.m1 = 0
result.m2 = 0
result.m3 = x
result.m4 = 0
result.m5 = 1
result.m6 = 0
result.m7 = y
result.m8 = 0
result.m9 = 0
result.m10 = 1
result.m11 = z
result.m12 = 0
result.m13 = 0
result.m14 = 0
result.m15 = 1
return result
end function
private function MatrixRotate(axis as Vector3, angle as single) as Matrix
dim as Matrix result
dim x as single = axis.x
dim y as single = axis.y
dim z as single = axis.z
dim length as single = sqrtf(((x * x) + (y * y)) + (z * z))
if (length <> 1.0) andalso (length <> 0.0) then
length = 1.0 / length
x *= length
y *= length
z *= length
end if
dim sinres as single = sinf(angle)
dim cosres as single = cosf(angle)
dim t as single = 1.0 - cosres
result.m0 = ((x * x) * t) + cosres
result.m1 = ((y * x) * t) + (z * sinres)
result.m2 = ((z * x) * t) - (y * sinres)
result.m3 = 0.0
result.m4 = ((x * y) * t) - (z * sinres)
result.m5 = ((y * y) * t) + cosres
result.m6 = ((z * y) * t) + (x * sinres)
result.m7 = 0.0
result.m8 = ((x * z) * t) + (y * sinres)
result.m9 = ((y * z) * t) - (x * sinres)
result.m10 = ((z * z) * t) + cosres
result.m11 = 0.0
result.m12 = 0.0
result.m13 = 0.0
result.m14 = 0.0
result.m15 = 1.0
return result
end function
private function MatrixRotateXYZ(ang as Vector3) as Matrix
dim as Matrix result = MatrixIdentity()
dim cosz as single = cosf(-ang.z)
dim sinz as single = sinf(-ang.z)
dim cosy as single = cosf(-ang.y)
dim siny as single = sinf(-ang.y)
dim cosx as single = cosf(-ang.x)
dim sinx as single = sinf(-ang.x)
result.m0 = cosz * cosy
result.m4 = ((cosz * siny) * sinx) - (sinz * cosx)
result.m8 = ((cosz * siny) * cosx) + (sinz * sinx)
result.m1 = sinz * cosy
result.m5 = ((sinz * siny) * sinx) + (cosz * cosx)
result.m9 = ((sinz * siny) * cosx) - (cosz * sinx)
result.m2 = -siny
result.m6 = cosy * sinx
result.m10 = cosy * cosx
return result
end function
private function MatrixRotateX(angle as single) as Matrix
dim as Matrix result = MatrixIdentity()
dim cosres as single = cosf(angle)
dim sinres as single = sinf(angle)
result.m5 = cosres
result.m6 = -sinres
result.m9 = sinres
result.m10 = cosres
return result
end function
private function MatrixRotateY(angle as single) as Matrix
dim as Matrix result = MatrixIdentity()
dim cosres as single = cosf(angle)
dim sinres as single = sinf(angle)
result.m0 = cosres
result.m2 = sinres
result.m8 = -sinres
result.m10 = cosres
return result
end function
private function MatrixRotateZ(angle as single) as Matrix
dim as Matrix result = MatrixIdentity()
dim cosres as single = cosf(angle)
dim sinres as single = sinf(angle)
result.m0 = cosres
result.m1 = -sinres
result.m4 = sinres
result.m5 = cosres
return result
end function
private function MatrixScale(x as single, y as single, z as single) as Matrix
dim as Matrix result
result.m0 = x
result.m1 = 0
result.m2 = 0
result.m3 = 0
result.m4 = 0
result.m5 = y
result.m6 = 0
result.m7 = 0
result.m8 = 0
result.m9 = 0
result.m10 = z
result.m11 = 0
result.m12 = 0
result.m13 = 0
result.m14 = 0
result.m15 = 1
return result
end function
private function MatrixMultiply(lefts as Matrix, rights as Matrix) as Matrix
dim as Matrix result
result.m0 = (((lefts.m0 * rights.m0) + (lefts.m1 * rights.m4)) + (lefts.m2 * rights.m8)) + (lefts.m3 * rights.m12)
result.m1 = (((lefts.m0 * rights.m1) + (lefts.m1 * rights.m5)) + (lefts.m2 * rights.m9)) + (lefts.m3 * rights.m13)
result.m2 = (((lefts.m0 * rights.m2) + (lefts.m1 * rights.m6)) + (lefts.m2 * rights.m10)) + (lefts.m3 * rights.m14)
result.m3 = (((lefts.m0 * rights.m3) + (lefts.m1 * rights.m7)) + (lefts.m2 * rights.m11)) + (lefts.m3 * rights.m15)
result.m4 = (((lefts.m4 * rights.m0) + (lefts.m5 * rights.m4)) + (lefts.m6 * rights.m8)) + (lefts.m7 * rights.m12)
result.m5 = (((lefts.m4 * rights.m1) + (lefts.m5 * rights.m5)) + (lefts.m6 * rights.m9)) + (lefts.m7 * rights.m13)
result.m6 = (((lefts.m4 * rights.m2) + (lefts.m5 * rights.m6)) + (lefts.m6 * rights.m10)) + (lefts.m7 * rights.m14)
result.m7 = (((lefts.m4 * rights.m3) + (lefts.m5 * rights.m7)) + (lefts.m6 * rights.m11)) + (lefts.m7 * rights.m15)
result.m8 = (((lefts.m8 * rights.m0) + (lefts.m9 * rights.m4)) + (lefts.m10 * rights.m8)) + (lefts.m11 * rights.m12)
result.m9 = (((lefts.m8 * rights.m1) + (lefts.m9 * rights.m5)) + (lefts.m10 * rights.m9)) + (lefts.m11 * rights.m13)
result.m10 = (((lefts.m8 * rights.m2) + (lefts.m9 * rights.m6)) + (lefts.m10 * rights.m10)) + (lefts.m11 * rights.m14)
result.m11 = (((lefts.m8 * rights.m3) + (lefts.m9 * rights.m7)) + (lefts.m10 * rights.m11)) + (lefts.m11 * rights.m15)
result.m12 = (((lefts.m12 * rights.m0) + (lefts.m13 * rights.m4)) + (lefts.m14 * rights.m8)) + (lefts.m15 * rights.m12)
result.m13 = (((lefts.m12 * rights.m1) + (lefts.m13 * rights.m5)) + (lefts.m14 * rights.m9)) + (lefts.m15 * rights.m13)
result.m14 = (((lefts.m12 * rights.m2) + (lefts.m13 * rights.m6)) + (lefts.m14 * rights.m10)) + (lefts.m15 * rights.m14)
result.m15 = (((lefts.m12 * rights.m3) + (lefts.m13 * rights.m7)) + (lefts.m14 * rights.m11)) + (lefts.m15 * rights.m15)
return result
end function
private function MatrixFrustum(lefts as double, rights as double, bottom as double, top as double, near as double, far as double) as Matrix
dim as Matrix result
dim rl as single = csng(rights - lefts)
dim tb as single = csng(top - bottom)
dim fn as single = csng(far - near)
result.m0 = (csng(near) * 2.0) / rl
result.m1 = 0.0
result.m2 = 0.0
result.m3 = 0.0
result.m4 = 0.0
result.m5 = (csng(near) * 2.0) / tb
result.m6 = 0.0
result.m7 = 0.0
result.m8 = (csng(rights) + csng(lefts)) / rl
result.m9 = (csng(top) + csng(bottom)) / tb
result.m10 = (-(csng(far) + csng(near))) / fn
result.m11 = -1.0
result.m12 = 0.0
result.m13 = 0.0
result.m14 = (-((csng(far) * csng(near)) * 2.0)) / fn
result.m15 = 0.0
return result
end function
private function MatrixPerspective(fovy as double, aspect as double, near as double, far as double) as Matrix
dim top as double = near * tan(fovy * 0.5)
dim rights as double = top * aspect
dim as Matrix result = MatrixFrustum(-rights, rights, -top, top, near, far)
return result
end function
private function MatrixOrtho(lefts as double, rights as double, bottom as double, top as double, near as double, far as double) as Matrix
dim as Matrix result
dim rl as single = csng(rights - lefts)
dim tb as single = csng(top - bottom)
dim fn as single = csng(far - near)
result.m0 = 2.0 / rl
result.m1 = 0.0
result.m2 = 0.0
result.m3 = 0.0
result.m4 = 0.0
result.m5 = 2.0 / tb
result.m6 = 0.0
result.m7 = 0.0
result.m8 = 0.0
result.m9 = 0.0
result.m10 = (-2.0) / fn
result.m11 = 0.0
result.m12 = (-(csng(lefts) + csng(rights))) / rl
result.m13 = (-(csng(top) + csng(bottom))) / tb
result.m14 = (-(csng(far) + csng(near))) / fn
result.m15 = 1.0
return result
end function
private function MatrixLookAt(eye as Vector3, target as Vector3, up as Vector3) as Matrix
dim as Matrix result
dim as Vector3 z = Vector3Subtract(eye, target)
z = Vector3Normalize(z)
dim as Vector3 x = Vector3CrossProduct(up, z)
x = Vector3Normalize(x)
dim as Vector3 y = Vector3CrossProduct(z, x)
y = Vector3Normalize(y)
result.m0 = x.x
result.m1 = x.y
result.m2 = x.z
result.m3 = 0.0
result.m4 = y.x
result.m5 = y.y
result.m6 = y.z
result.m7 = 0.0
result.m8 = z.x
result.m9 = z.y
result.m10 = z.z
result.m11 = 0.0
result.m12 = eye.x
result.m13 = eye.y
result.m14 = eye.z
result.m15 = 1.0
result = MatrixInvert(result)
return result
end function
private function MatrixToFloatV(mat as Matrix) as float16
dim buffer as float16
buffer.v(0) = mat.m0
buffer.v(1) = mat.m1
buffer.v(2) = mat.m2
buffer.v(3) = mat.m3
buffer.v(4) = mat.m4
buffer.v(5) = mat.m5
buffer.v(6) = mat.m6
buffer.v(7) = mat.m7
buffer.v(8) = mat.m8
buffer.v(9) = mat.m9
buffer.v(10) = mat.m10
buffer.v(11) = mat.m11
buffer.v(12) = mat.m12
buffer.v(13) = mat.m13
buffer.v(14) = mat.m14
buffer.v(15) = mat.m15
return buffer
end function
private function QuaternionIdentity() as Quaternion
dim as Quaternion result = Quaternion(0,0,0,1)
return result
end function
private function QuaternionLength(q as Quaternion) as single
dim result as single = csng(sqrt((((q.x * q.x) + (q.y * q.y)) + (q.z * q.z)) + (q.w * q.w)))
return result
end function
private function QuaternionNormalize(q as Quaternion) as Quaternion
dim as Quaternion result
dim length as single
dim ilength as single
length = QuaternionLength(q)
if length = 0.0 then
length = 1.0
end if
ilength = 1.0 / length
result.x = q.x * ilength
result.y = q.y * ilength
result.z = q.z * ilength
result.w = q.w * ilength
return result
end function
private function QuaternionInvert(q as Quaternion) as Quaternion
dim as Quaternion result = q
dim length as single = QuaternionLength(q)
dim lengthSq as single = length * length
if lengthSq <> 0.0 then
dim i as single = 1.0 / lengthSq
result.x *= -i
result.y *= -i
result.z *= -i
result.w *= i
end if
return result
end function
private function QuaternionMultiply(q1 as Quaternion, q2 as Quaternion) as Quaternion
dim as Quaternion result
dim qax as single = q1.x
dim qay as single = q1.y
dim qaz as single = q1.z
dim qaw as single = q1.w
dim qbx as single = q2.x
dim qby as single = q2.y
dim qbz as single = q2.z
dim qbw as single = q2.w
result.x = (((qax * qbw) + (qaw * qbx)) + (qay * qbz)) - (qaz * qby)
result.y = (((qay * qbw) + (qaw * qby)) + (qaz * qbx)) - (qax * qbz)
result.z = (((qaz * qbw) + (qaw * qbz)) + (qax * qby)) - (qay * qbx)
result.w = (((qaw * qbw) - (qax * qbx)) - (qay * qby)) - (qaz * qbz)
return result
end function
private function QuaternionLerp(q1 as Quaternion, q2 as Quaternion, amount as single) as Quaternion
dim as Quaternion result
result.x = q1.x + (amount * (q2.x - q1.x))
result.y = q1.y + (amount * (q2.y - q1.y))
result.z = q1.z + (amount * (q2.z - q1.z))
result.w = q1.w + (amount * (q2.w - q1.w))
return result
end function
private function QuaternionNlerp(q1 as Quaternion, q2 as Quaternion, amount as single) as Quaternion
dim as Quaternion result = QuaternionLerp(q1, q2, amount)
result = QuaternionNormalize(result)
return result
end function
private function QuaternionSlerp(q1 as Quaternion, q2 as Quaternion, amount as single) as Quaternion
dim as Quaternion result
dim cosHalfTheta as single = (((q1.x * q2.x) + (q1.y * q2.y)) + (q1.z * q2.z)) + (q1.w * q2.w)
if fabs(cosHalfTheta) >= 1.0 then
result = q1
elseif cosHalfTheta > 0.95f then
result = QuaternionNlerp(q1, q2, amount)
else
dim halfTheta as single = acosf(cosHalfTheta)
dim sinHalfTheta as single = sqrtf(1.0 - (cosHalfTheta * cosHalfTheta))
if fabs(sinHalfTheta) < 0.001f then
result.x = (q1.x * 0.5f) + (q2.x * 0.5f)
result.y = (q1.y * 0.5f) + (q2.y * 0.5f)
result.z = (q1.z * 0.5f) + (q2.z * 0.5f)
result.w = (q1.w * 0.5f) + (q2.w * 0.5f)
else
dim ratioA as single = sinf((1 - amount) * halfTheta) / sinHalfTheta
dim ratioB as single = sinf(amount * halfTheta) / sinHalfTheta
result.x = (q1.x * ratioA) + (q2.x * ratioB)
result.y = (q1.y * ratioA) + (q2.y * ratioB)
result.z = (q1.z * ratioA) + (q2.z * ratioB)
result.w = (q1.w * ratioA) + (q2.w * ratioB)
end if
end if
return result
end function
private function QuaternionFromVector3ToVector3(from as Vector3, tos as Vector3) as Quaternion
dim as Quaternion result
dim cos2Theta as single = Vector3DotProduct(from, tos)
dim as Vector3 cross = Vector3CrossProduct(from, tos)
result.x = cross.x
result.y = cross.y
result.z = cross.y
result.w = 1.0 + cos2Theta
result = QuaternionNormalize(result)
return result
end function
private function QuaternionFromMatrix(mat as Matrix) as Quaternion
dim as Quaternion result
dim trace as single = MatrixTrace(mat)
if trace > 0.0 then
dim s as single = sqrtf(trace + 1) * 2.0
dim invS as single = 1.0 / s
result.w = s * 0.25f
result.x = (mat.m6 - mat.m9) * invS
result.y = (mat.m8 - mat.m2) * invS
result.z = (mat.m1 - mat.m4) * invS
else
dim m00 as single = mat.m0
dim m11 as single = mat.m5
dim m22 as single = mat.m10
if (m00 > m11) andalso (m00 > m22) then
dim s as single = csng(sqrt(((1.0 + m00) - m11) - m22)) * 2.0
dim invS as single = 1.0 / s
result.w = (mat.m6 - mat.m9) * invS
result.x = s * 0.25f
result.y = (mat.m4 + mat.m1) * invS
result.z = (mat.m8 + mat.m2) * invS
elseif m11 > m22 then
dim s as single = sqrtf(((1.0 + m11) - m00) - m22) * 2.0
dim invS as single = 1.0 / s
result.w = (mat.m8 - mat.m2) * invS
result.x = (mat.m4 + mat.m1) * invS
result.y = s * 0.25f
result.z = (mat.m9 + mat.m6) * invS
else
dim s as single = sqrtf(((1.0 + m22) - m00) - m11) * 2.0
dim invS as single = 1.0 / s
result.w = (mat.m1 - mat.m4) * invS
result.x = (mat.m8 + mat.m2) * invS
result.y = (mat.m9 + mat.m6) * invS
result.z = s * 0.25f
end if
end if
return result
end function
private function QuaternionToMatrix(q as Quaternion) as Matrix
dim as Matrix result
dim x as single = q.x
dim y as single = q.y
dim z as single = q.z
dim w as single = q.w
dim x2 as single = x + x
dim y2 as single = y + y
dim z2 as single = z + z
dim length as single = QuaternionLength(q)
dim lengthSquared as single = length * length
dim xx as single = (x * x2) / lengthSquared
dim xy as single = (x * y2) / lengthSquared
dim xz as single = (x * z2) / lengthSquared
dim yy as single = (y * y2) / lengthSquared
dim yz as single = (y * z2) / lengthSquared
dim zz as single = (z * z2) / lengthSquared
dim wx as single = (w * x2) / lengthSquared
dim wy as single = (w * y2) / lengthSquared
dim wz as single = (w * z2) / lengthSquared
result.m0 = 1.0 - (yy + zz)
result.m1 = xy - wz
result.m2 = xz + wy
result.m3 = 0.0
result.m4 = xy + wz
result.m5 = 1.0 - (xx + zz)
result.m6 = yz - wx
result.m7 = 0.0
result.m8 = xz - wy
result.m9 = yz + wx
result.m10 = 1.0 - (xx + yy)
result.m11 = 0.0
result.m12 = 0.0
result.m13 = 0.0
result.m14 = 0.0
result.m15 = 1.0
return result
end function
private function QuaternionFromAxisAngle(axis as Vector3, angle as single) as Quaternion
dim as Quaternion result = Quaternion(0,0,0,1)
if Vector3Length(axis) <> 0.0 then
angle *= 0.5f
end if
axis = Vector3Normalize(axis)
dim sinres as single = sinf(angle)
dim cosres as single = cosf(angle)
result.x = axis.x * sinres
result.y = axis.y * sinres
result.z = axis.z * sinres
result.w = cosres
result = QuaternionNormalize(result)
return result
end function
private sub QuaternionToAxisAngle(q as Quaternion, outAxis as Vector3 ptr, outAngle as single ptr)
if fabs(q.w) > 1.0 then
q = QuaternionNormalize(q)
end if
dim as Vector3 resAxis = Vector3(0,0,0)
dim resAngle as single = 0.0
resAngle = 2.0 * acosf(q.w)
dim den as single = sqrtf(1.0 - (q.w * q.w))
if den > 0.0001f then
resAxis.x = q.x / den
resAxis.y = q.y / den
resAxis.z = q.z / den
else
resAxis.x = 1.0
end if
(*outAxis) = resAxis
(*outAngle) = resAngle
end sub
private function QuaternionFromEuler(roll as single, pitch as single, yaw as single) as Quaternion
dim as Quaternion q
dim x0 as single = cosf(roll * 0.5f)
dim x1 as single = sinf(roll * 0.5f)
dim y0 as single = cosf(pitch * 0.5f)
dim y1 as single = sinf(pitch * 0.5f)
dim z0 as single = cosf(yaw * 0.5f)
dim z1 as single = sinf(yaw * 0.5f)
q.x = ((x1 * y0) * z0) - ((x0 * y1) * z1)
q.y = ((x0 * y1) * z0) + ((x1 * y0) * z1)
q.z = ((x0 * y0) * z1) - ((x1 * y1) * z0)
q.w = ((x0 * y0) * z0) + ((x1 * y1) * z1)
return q
end function
private function QuaternionToEuler(q as Quaternion) as Vector3
dim as Vector3 result
dim x0 as single = 2.0 * ((q.w * q.x) + (q.y * q.z))
dim x1 as single = 1.0 - (2.0 * ((q.x * q.x) + (q.y * q.y)))
result.x = atan2f(x0, x1) * (180.0 / 3.14159265358979323846)
dim y0 as single = 2.0 * ((q.w * q.y) - (q.z * q.x))
y0 = iif(y0 > 1.0, 1.0, y0)
y0 = iif(y0 < (-1.0), -1.0, y0)
result.y = asinf(y0) * (180.0 / 3.14159265358979323846)
dim z0 as single = 2.0 * ((q.w * q.z) + (q.x * q.y))
dim z1 as single = 1.0 - (2.0 * ((q.y * q.y) + (q.z * q.z)))
result.z = atan2f(z0, z1) * (180.0 / 3.14159265358979323846)
return result
end function
private function QuaternionTransform(q as Quaternion, mat as Matrix) as Quaternion
dim as Quaternion result
result.x = (((mat.m0 * q.x) + (mat.m4 * q.y)) + (mat.m8 * q.z)) + (mat.m12 * q.w)
result.y = (((mat.m1 * q.x) + (mat.m5 * q.y)) + (mat.m9 * q.z)) + (mat.m13 * q.w)
result.z = (((mat.m2 * q.x) + (mat.m6 * q.y)) + (mat.m10 * q.z)) + (mat.m14 * q.w)
result.w = (((mat.m3 * q.x) + (mat.m7 * q.y)) + (mat.m11 * q.z)) + (mat.m15 * q.w)
return result
end function
end extern