-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.py
105 lines (86 loc) · 3.82 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Sample code to set up and do a run by script
import argparse
import datetime
import platform
import pickle
from fastai import *
from fastai.basics import *
from multispectral import windows
from multispectral import tools
#import neptune
import infra
import zoo
parser = argparse.ArgumentParser()
parser.add_argument("--shutdown", help="Shutdown computer when complete", action='store_true')
parser.add_argument("--description", help="Description of run", default="runner.py")
parser.add_argument("--epochs", type=int, help="How many full epochs to run (default 1)", default=1)
parser.add_argument("--save", help="Save resulting model(s)", action='store_true' )
parser.add_argument("--cpu", help="Run on cpu", action='store_true')
parser.add_argument("--test_run", help="Run with a minimal dataset size to verify code works", action='store_true')
args = parser.parse_args()
# identity of directory to store things in.
gdrive_params = "-p 1J-laJXulHFxVQT3L3ZwRRdlyyGbDOhSo"
windows_list = os.environ['LANDSAT_DIR'] + '/all_windows.csv'
#neptune_project = neptune.init('denised/landcover')
infra.set_defaults(
corine_directory=os.environ['CORINE_DIR'],
traintracker_store=infra.TrainTrackerWebHook(os.environ['TRAINTRACKER_URI'])
)
wl = list(windows.from_file(windows_list))
(tr_list, val_list) = windows.chunked_split(wl,512)
if args.test_run:
tr_list = tr_list[:200]
val_list = val_list[:20]
#ender = infra.TrainEnder()
#infra.set_defaults(train_end=4)
if args.cpu:
infra.set_defaults(device=torch.device('cpu'))
logfilename = "runnerlog_{:%y%m%d_%H%M%S}.csv".format(datetime.datetime.now())
model_dir = Path(infra.defaults.model_directory)
def idname(learner):
"""Get the tracker id of the learner in a form suitable for use in a file name (i.e. remove the trailing space(s))"""
return learner.parameters['train_id'].rstrip()
def save_sample(learner,data):
"""Save a little bit of data with predictions and targets, so we can explore without reloading"""
predset = tools.get_prediction_set(learner,data).to_numpy()
filename = model_dir / (idname(learner) + "_sample.pkl")
with open(filename, 'wb') as fp:
pickle.dump( predset, fp )
return filename
def run_one(description=None, epochs=None, starting_from=None):
description = description if description is not None else args.description
epochs = epochs or args.epochs
monitor_frequency = 80
if args.test_run:
monitor_frequency = 20
monitor=infra.CycleHandler.create(n=monitor_frequency, callbacks=[
infra.DiceMetric,
infra.GradientMetrics,
infra.CSVLogger(logfilename,'a')])
learner = zoo.MultiUResNet.create(tr_list, val_list, callbacks=[], callback_fns=[monitor])
if starting_from: # begin with existing weights
learner.model.load_state_dict(torch.load(model_dir/starting_from))
learner.fit(epochs, description=description) # pylint: disable=unexpected-keyword-arg
# save the model
if args.save:
name = model_dir / (idname(learner) + ".pth")
torch.save(learner.model.state_dict(), name)
# save a sample to look at.
samplename = save_sample(learner, tr_list[:100])
# upload log file and sample file
# This requires gdrive to be installed (and of course you need your own account/folder to put things in)
try:
os.system(f"gdrive upload {gdrive_params} {logfilename}")
os.system(f"gdrive upload {gdrive_params} {samplename}")
os.system(f"mv {logfilename} logs")
except Exception as e:
# just print and continue
print(e)
try:
run_one()
finally:
if args.shutdown:
# do whatever the right technique is for the platform(s) you run on.
#os.system("sudo shutdown now")
myname = platform.node()
os.system(f"paperspace machines stop --machineId {myname}")