-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn_stable-baselines3.py
73 lines (61 loc) · 3.54 KB
/
dqn_stable-baselines3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from algs.dqn.reference.dqn_callback import SaveOnBestTrainingRewardCallback
import argparse
from algs.dqn.reference.network import ColoringCNN
from stable_baselines3 import DQN
from stable_baselines3.common import utils as sb3_utils
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.dqn import CnnPolicy
from utils import helper
from comet_ml import Experiment # type: ignore
device, use_cuda = helper.get_pytorch_device()
def run(experiment: Experiment, params: argparse.Namespace):
sb3_utils.set_random_seed(params.seed, using_cuda=use_cuda)
env = helper.make_env(params, 'env')
# Logs will be saved in log_dir/monitor.csv
env = Monitor(env)
with experiment.train():
callback = SaveOnBestTrainingRewardCallback(experiment, check_freq=1000)
# Deactivate all the DQN extensions to have the original version
# In practice, it is recommend to have them activated
model = DQN(CnnPolicy, env, learning_rate=params.learning_rate,
gamma=params.gamma, seed=params.seed, max_grad_norm=params.max_grad_norm,
verbose=1, device=device,
policy_kwargs={'features_extractor_class': ColoringCNN})
model.learn(total_timesteps=params.max_ts, callback=callback)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--size", type=str, default="2x2")
parser.add_argument("--learning_rate", type=float, default=3e-2)
# default is set to 50_000 in stable_baselines3/dqn/dqn.py
parser.add_argument("--learning_starts", type=int, default=None)
parser.add_argument("--gamma", type=float, default=1)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--step_reward", default="1", type=float)
parser.add_argument("--env_as_image", action="store_true")
parser.add_argument("--depth_channel_first", action="store_true")
parser.add_argument("--with_step_penalty", action="store_true")
parser.add_argument("--with_revisit_penalty", action="store_true")
parser.add_argument("--stay_inside", action="store_true")
parser.add_argument("--with_color_reward", action="store_true")
parser.add_argument("--total_reward", action="store_true")
parser.add_argument("--covered_steps_ratio", action="store_true")
parser.add_argument('--num_episodes', type=int, default=20000, help='number of episodes')
parser.add_argument('--scaling_factor', type=float, default=1, help='learning rate')
parser.add_argument('--log_interval', type=int, default=10, metavar='N',
help='interval between training status logs (default: 10)')
parser.add_argument("--log_tensorboard", action="store_true")
parser.add_argument("--render", action="store_true")
parser.add_argument("--target_update_rate", type=float, default=0.1)
parser.add_argument("--replay_size", type=int, default=int(1e6))
parser.add_argument("--start_train_ts", type=int, default=10000)
parser.add_argument("--epsilon_start", type=float, default=1.0)
parser.add_argument("--epsilon_end", type=float, default=0.01)
parser.add_argument("--epsilon_decay", type=int, default=30000)
parser.add_argument("--max_ts", type=int)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--target_network_update_f", type=int, default=10000)
parser.add_argument("--max_grad_norm", type=float)
params = helper.get_parsed_params(parser)
experiment = Experiment()
experiment.log_parameters(params) # type: ignore
run(experiment, params)