forked from C0untFloyd/bark-gui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
webui.py
357 lines (300 loc) · 13.8 KB
/
webui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
from cProfile import label
from distutils.command.check import check
from doctest import Example
import gradio as gr
import os
import re
import sys
import numpy as np
import logging
import torch
from bark import SAMPLE_RATE, generate_audio
from bark.clonevoice import clone_voice
from bark.generation import SAMPLE_RATE, preload_models, codec_decode, generate_coarse, generate_fine, generate_text_semantic
from scipy.io.wavfile import write as write_wav
from datetime import datetime
from time import time
from tqdm.auto import tqdm
OUTPUTFOLDER = "Outputs"
# Most of the chunked generation ripped from https://github.com/serp-ai/bark-with-voice-clone
def split_and_recombine_text(text, desired_length=100, max_length=150):
# from https://github.com/neonbjb/tortoise-tts
"""Split text it into chunks of a desired length trying to keep sentences intact."""
# normalize text, remove redundant whitespace and convert non-ascii quotes to ascii
text = re.sub(r"\n\n+", "\n", text)
text = re.sub(r"\s+", " ", text)
text = re.sub(r"[“”]", '"', text)
rv = []
in_quote = False
current = ""
split_pos = []
pos = -1
end_pos = len(text) - 1
def seek(delta):
nonlocal pos, in_quote, current
is_neg = delta < 0
for _ in range(abs(delta)):
if is_neg:
pos -= 1
current = current[:-1]
else:
pos += 1
current += text[pos]
if text[pos] == '"':
in_quote = not in_quote
return text[pos]
def peek(delta):
p = pos + delta
return text[p] if p < end_pos and p >= 0 else ""
def commit():
nonlocal rv, current, split_pos
rv.append(current)
current = ""
split_pos = []
while pos < end_pos:
c = seek(1)
# do we need to force a split?
if len(current) >= max_length:
if len(split_pos) > 0 and len(current) > (desired_length / 2):
# we have at least one sentence and we are over half the desired length, seek back to the last split
d = pos - split_pos[-1]
seek(-d)
else:
# no full sentences, seek back until we are not in the middle of a word and split there
while c not in "!?.\n " and pos > 0 and len(current) > desired_length:
c = seek(-1)
commit()
# check for sentence boundaries
elif not in_quote and (c in "!?\n" or (c == "." and peek(1) in "\n ")):
# seek forward if we have consecutive boundary markers but still within the max length
while (
pos < len(text) - 1 and len(current) < max_length and peek(1) in "!?."
):
c = seek(1)
split_pos.append(pos)
if len(current) >= desired_length:
commit()
# treat end of quote as a boundary if its followed by a space or newline
elif in_quote and peek(1) == '"' and peek(2) in "\n ":
seek(2)
split_pos.append(pos)
rv.append(current)
# clean up, remove lines with only whitespace or punctuation
rv = [s.strip() for s in rv]
rv = [s for s in rv if len(s) > 0 and not re.match(r"^[\s\.,;:!?]*$", s)]
return rv
def generate_with_settings(text_prompt, semantic_temp=0.7, semantic_top_k=50, semantic_top_p=0.95, coarse_temp=0.7, coarse_top_k=50, coarse_top_p=0.95, fine_temp=0.5, voice_name=None, use_semantic_history_prompt=True, use_coarse_history_prompt=True, use_fine_history_prompt=True, output_full=False):
# generation with more control
x_semantic = generate_text_semantic(
text_prompt,
history_prompt=voice_name if use_semantic_history_prompt else None,
temp=semantic_temp,
top_k=semantic_top_k,
top_p=semantic_top_p
)
x_coarse_gen = generate_coarse(
x_semantic,
history_prompt=voice_name if use_coarse_history_prompt else None,
temp=coarse_temp,
top_k=coarse_top_k,
top_p=coarse_top_p
)
x_fine_gen = generate_fine(
x_coarse_gen,
history_prompt=voice_name if use_fine_history_prompt else None,
temp=fine_temp
)
if output_full:
full_generation = {
'semantic_prompt': x_semantic,
'coarse_prompt': x_coarse_gen,
'fine_prompt': x_fine_gen
}
return full_generation, codec_decode(x_fine_gen)
return codec_decode(x_fine_gen)
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, quick_generation, complete_settings, progress=gr.Progress(track_tqdm=True)):
if text == None or len(text) < 1:
raise gr.Error('No text entered!')
# Chunk the text into smaller pieces then combine the generated audio
# generation settings
if selected_speaker == 'None':
selected_speaker = None
voice_name = selected_speaker
semantic_temp = text_temp
semantic_top_k = 50
semantic_top_p = 0.95
coarse_temp = waveform_temp
coarse_top_k = 50
coarse_top_p = 0.95
fine_temp = 0.5
use_semantic_history_prompt = "Use semantic history" in complete_settings
use_coarse_history_prompt = "Use coarse history" in complete_settings
use_fine_history_prompt = "Use fine history" in complete_settings
use_last_generation_as_history = "Use last generation as history" in complete_settings
progress(0, desc="Generating")
texts = split_and_recombine_text(text)
all_parts = []
for i, text in tqdm(enumerate(texts), total=len(texts)):
if quick_generation == True:
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> `{text}`")
audio_array = generate_audio(text, selected_speaker, text_temp, waveform_temp)
i+=1
else:
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> `{text}`")
full_generation, audio_array = generate_with_settings(
text,
semantic_temp=semantic_temp,
semantic_top_k=semantic_top_k,
semantic_top_p=semantic_top_p,
coarse_temp=coarse_temp,
coarse_top_k=coarse_top_k,
coarse_top_p=coarse_top_p,
fine_temp=fine_temp,
voice_name=voice_name,
use_semantic_history_prompt=use_semantic_history_prompt,
use_coarse_history_prompt=use_coarse_history_prompt,
use_fine_history_prompt=use_fine_history_prompt,
output_full=True,
)
i+=1
# Noticed this in the HF Demo - convert to 16bit int -32767/32767 - most used audio format
audio_array = (audio_array * 32767).astype(np.int16)
if len(texts) > 1:
save_wav(audio_array, create_filename(OUTPUTFOLDER, "audioclip",".wav"))
if quick_generation == False & use_last_generation_as_history:
# save to npz
voice_name = create_filename(OUTPUTFOLDER, "audioclip", "")
save_voice(voice_name,
full_generation['semantic_prompt'],
full_generation['coarse_prompt'],
full_generation['fine_prompt'])
# loading voice from custom folder needs to have extension
voice_name = voice_name + ".npz"
all_parts.append(audio_array)
audio_array = np.concatenate(all_parts, axis=-1)
# save & play audio
result = create_filename(OUTPUTFOLDER, "final",".wav")
save_wav(audio_array, result)
return result
def create_filename(path, name, extension):
now = datetime.now()
date_str = now.strftime("%m-%d-%Y")
outputs_folder = os.path.join(os.getcwd(), path)
if not os.path.exists(outputs_folder):
os.makedirs(outputs_folder)
sub_folder = os.path.join(outputs_folder, date_str)
if not os.path.exists(sub_folder):
os.makedirs(sub_folder)
now = datetime.now()
time_str = now.strftime("%H-%M-%S")
file_name = f"{name}_{time_str}{extension}"
return os.path.join(sub_folder, file_name)
def save_wav(audio_array, filename):
write_wav(filename, SAMPLE_RATE, audio_array)
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt):
np.savez_compressed(
filename,
semantic_prompt=semantic_prompt,
coarse_prompt=coarse_prompt,
fine_prompt=fine_prompt
)
def on_quick_gen_changed(checkbox):
if checkbox == False:
return gr.CheckboxGroup.update(visible=True)
return gr.CheckboxGroup.update(visible=False)
def delete_output_files(checkbox_state):
if checkbox_state:
outputs_folder = os.path.join(os.getcwd(), OUTPUTFOLDER)
if os.path.exists(outputs_folder):
purgedir(outputs_folder)
return False
# https://stackoverflow.com/a/54494779
def purgedir(parent):
for root, dirs, files in os.walk(parent):
for item in files:
# Delete subordinate files
filespec = os.path.join(root, item)
os.unlink(filespec)
for item in dirs:
# Recursively perform this operation for subordinate directories
purgedir(os.path.join(root, item))
logger = logging.getLogger(__name__)
autolaunch = False
if len(sys.argv) > 1:
autolaunch = "-autolaunch" in sys.argv
if torch.cuda.is_available() == False:
os.environ['BARK_FORCE_CPU'] = 'True'
logger.warning("No CUDA detected, fallback to CPU!")
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}')
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}')
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}')
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}')
print(f'autolaunch={autolaunch}\n')
# Collect all existing speakers/voices in dir
speakers_list = []
for file in os.listdir("./bark/assets/prompts"):
if file.endswith(".npz"):
speakers_list.append(file[:-4])
speakers_list.sort()
speakers_list.insert(0, 'None')
# Create Gradio Blocks
with gr.Blocks(title="Bark Enhanced Gradio GUI", mode="Bark Enhanced") as barkgui:
gr.Markdown("### [Bark Enhanced](https://github.com/C0untFloyd/bark-gui)")
with gr.Tab("TTS"):
with gr.Row():
with gr.Column():
placeholder = "Enter text here."
input_text = gr.Textbox(label="Input Text", lines=4, placeholder=placeholder)
examples = [
"Special meanings: [laughter] [laughs] [sighs] [music] [gasps] [clears throat] MAN: WOMAN:",
"♪ Never gonna make you cry, never gonna say goodbye, never gonna tell a lie and hurt you ♪",
"And now — a picture of a larch [laughter]",
"""
WOMAN: I would like an oatmilk latte please.
MAN: Wow, that's expensive!
"""
]
examples = gr.Examples(examples=examples, inputs=input_text)
with gr.Row():
with gr.Column():
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice")
with gr.Column():
text_temp = gr.Slider(
0.1,
1.0,
value=0.7,
label="Generation Temperature",
info="1.0 more diverse, 0.1 more conservative"
)
with gr.Column():
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative")
with gr.Row():
with gr.Column():
quick_gen_checkbox = gr.Checkbox(label="Quick Generation", value=True)
with gr.Column():
settings_checkboxes = ["Use semantic history", "Use coarse history", "Use fine history", "Use last generation as history"]
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False)
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings)
with gr.Row():
with gr.Column():
tts_create_button = gr.Button("Create")
with gr.Column():
hidden_checkbox = gr.Checkbox(visible=False)
button_delete_files = gr.Button("Clear output folder")
with gr.Row():
output_audio = gr.Audio(label="Generated Audio", type="filepath")
with gr.Tab("Clone Voice"):
input_audio_filename = gr.Audio(label="Input audio.wav", source="upload", type="filepath")
transcription_text = gr.Textbox(label="Transcription Text", lines=1, placeholder="Enter Text of your Audio Sample here...")
initialname = "./bark/assets/prompts/MeMyselfAndI"
#inputAudioFilename = gr.Textbox(label="Filename of Input Audio", lines=1, placeholder="audio.wav")
output_voice = gr.Textbox(label="Filename of trained Voice", lines=1, placeholder=initialname, value=initialname)
clone_voice_button = gr.Button("Create Voice")
dummy = gr.Text(label="Progress")
tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, quick_gen_checkbox, complete_settings],outputs=output_audio)
# Javascript hack to display modal confirmation dialog
js = "(x) => confirm('Are you sure? This will remove all files from output folder')"
button_delete_files.click(None, None, hidden_checkbox, _js=js)
hidden_checkbox.change(delete_output_files, [hidden_checkbox], [hidden_checkbox])
clone_voice_button.click(clone_voice, inputs=[input_audio_filename, transcription_text, output_voice], outputs=dummy)
barkgui.queue().launch(inbrowser=autolaunch)