-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy paththeory_vec_saveDV.py
460 lines (368 loc) · 17.3 KB
/
theory_vec_saveDV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import os
import numpy as np
import scipy
from scipy import integrate
import matplotlib.pyplot as plt
import camb
from camb import model
from jupyterthemes import jtplot
import math
import time
import h5py
import sys
moments_path = os.path.realpath(os.path.join(os.getcwd(), '../Moments_analysis/'))
sys.path.insert(0, moments_path)
import h5py as h5
import healpy as hp
import pickle
from Moments_analysis import gk_inv
from Moments_analysis import moments_map
import copy
def save_obj(name, obj):
with open(name + '.pkl', 'wb') as f:
pickle.dump(obj, f, protocol = 2)
def load_obj(name):
with open(name + '.pkl', 'rb') as f:
return pickle.load(f)#, encoding='latin1')
jtplot.reset()
import time
t0_init = time.time()
# test LCDM model
bestfit = {}
h=0.6736
bestfit["ombh2"] = 0.0493*h**2
bestfit["omch2"] = (0.26-0.0493-0.0014)*h**2
bestfit["As"] = 3.0775467136912062e-09 #rootfound for this for sig8 = 0.84
bestfit["H0"] = h*100
bestfit["tau"] = 0.5617335E-01
bestfit["ns"] = 0.9649
bestfit["mnu"] = 0.0014*h**2*93.14
bestfit["nnu"] = 3.046
pars_LCDM = camb.set_params(**bestfit, DoLateRadTruncation=True)
pars_LCDM.WantTransfer = True
results_LCDM = camb.get_results(pars_LCDM)
sig8 = results_LCDM.get_sigma8_0()
PK = camb.get_matter_power_interpolator(pars_LCDM, hubble_units=False, k_hunit=False, kmax=50.0, zmax=4,nonlinear=True, extrap_kmax= 10**10)
PK_L = camb.get_matter_power_interpolator(pars_LCDM, hubble_units=False, k_hunit=False, kmax=50.0, zmax=4,nonlinear=False, extrap_kmax= 10**10)
chitoz = results_LCDM.redshift_at_comoving_radial_distance
ztochi = results_LCDM.comoving_radial_distance
try:
import pickle as pk
df = pk.load(open('namaster_stuff.pk','rb'))
M = df['M']
ME = df['ME']
mask = df['mask']
lmax = 1024
nside = 512
except:
fname = '/global/cfs/cdirs/des/shivamp/gen_moments/Moments_analysis_minsu/Covariance/mask_DES_y3_py2'
mask = load_obj(fname)
print ('f_sky: ', 1./(len(mask)*1./len(mask[mask])))
mask_sm = hp.sphtfunc.smoothing(mask, (13./60.)*np.pi/180. )
mask_sm[mask] = 1.
mask = copy.copy(mask_sm)
# computes Cl.
import pymaster as nmt
print('loaded')
# Read healpix maps and initialize a spin-0 and spin-2 field
f_0 = nmt.NmtField(mask, [mask])
f_2 = nmt.NmtField(mask, [mask,mask])
bins = nmt.bins.NmtBin.from_lmax_linear(1024, 1, is_Dell=False)#nmt.bins.NmtBin(nside=1024, ells=2048)
w = nmt.NmtWorkspace()
w.compute_coupling_matrix(f_2, f_2, bins, is_teb=False)
M = w.get_coupling_matrix()
ME = (M[::4,:][:,::4])
def compute_Plz_mat(PK, zbin, lmax = 1024, mask = None):
'''
It computes the smoothed (by a top-hat filter) 2nd moments of the density field given the
3D power spectrum at fixed z. (k=l/chi(z)).
'''
nz = len(zbin)
nell = lmax
chi_zbin = results_LCDM.comoving_radial_distance(zbin)
ell = np.arange(lmax)
z_mat = np.tile(zbin.reshape(nz, 1), (1, nell))
chi_mat = np.tile(chi_zbin.reshape(nz, 1), (1, nell))
ell_mat = np.tile(ell.reshape(1, nell), (nz, 1))
k_mat = ell_mat/chi_mat
P_lz_mat = np.exp(PK.ev(z_mat, np.log(k_mat + 1e-6)))
F_l = hp.sphtfunc.pixwin(512, lmax = lmax)[:lmax]
F_l_mat = np.tile(F_l.reshape(1, nell), (nz, 1))
P_lz_mat *= (F_l_mat)**2
if mask is not None:
f_l = (ell+2)*(ell-1)/(ell*(ell+1))
f_l[0:2] = 0
f_l_mat = np.tile(f_l[:lmax].reshape(1, nell), (nz, 1))
P_lz_mat *= f_l_mat
P_lz_mat_maskv = np.zeros((nz, nell))
for jz in range(nz):
P_lz_mat_maskv[jz, :] = mask[:lmax,:lmax]@P_lz_mat[jz, :lmax]
f_linv = (ell*(ell+1))/((ell+2)*(ell-1))
f_linv[0:2] = 0
f_linv_mat = np.tile(f_linv.reshape(1, nell), (nz, 1))
P_lz_mat = P_lz_mat_maskv*f_linv_mat
return P_lz_mat
def get_Dz_knletc(PK_L, zbin, lmax=1024):
nz = len(zbin)
nell = lmax
knl_nz = np.zeros(nz)
Dz_nz = np.zeros(nz)
ns_mat = np.zeros((nz, nell))
for jz in range(nz):
z = zbin[jz]
def helper(k):
return k**3*PK_L.P(z, k)/(2*np.pi**2)-1
knl = scipy.optimize.root(helper, 0.5).x[0]
knl_nz[jz] = knl
Dz_nz[jz] = np.sqrt(PK_L.P(z, 1)/PK_L.P(0, 1))
kay = np.arange(lmax)/results_LCDM.comoving_radial_distance(z)
ns = (kay/PK_L.P(0,kay))*(PK_L.P(0,kay+0.001)-PK_L.P(0,kay))/(0.001)
ns_mat[jz, :] = ns
return Dz_nz, knl_nz, ns_mat
def compute_factosum(zbin, smoothing_scales1, smoothing_scales2, lmax = 1024):
'''
It computes the smoothed (by a top-hat filter) 2nd moments of the density field given the
3D power spectrum at fixed z. (k=l/chi(z)).
'''
nz = len(zbin)
nell = lmax
ell = np.arange(lmax)
fac_to_sum = np.zeros((nz, nell, len(smoothing_scales1)))
for i, sm in enumerate(zip(smoothing_scales1,smoothing_scales2)):
# convert scale to radians ***
sm_rad1 =(sm[0]/60.)*np.pi/180.
sm_rad2 =(sm[1]/60.)*np.pi/180.
# smoothing kernel (top-hat)
A1 = 1./(2*np.pi*(1-np.cos(sm_rad1)))
A2 = 1./(2*np.pi*(1-np.cos(sm_rad2)))
B = np.sqrt(np.pi/(2.*ell+1.0))
fact1 = -B*(scipy.special.eval_legendre(ell+1,np.cos(sm_rad1))-scipy.special.eval_legendre(ell-1,np.cos(sm_rad1)))*A1
fact1[0] = 1/(4*np.pi) # MINSUP THIS WAS 1, I THINK FACT1*FACT2 SHOULD BE 1/4PI WHEN l=0? check this by plotting and making it smooth
fact2 = -B*(scipy.special.eval_legendre(ell+1,np.cos(sm_rad2))-scipy.special.eval_legendre(ell-1,np.cos(sm_rad2)))*A2
fact2[0] = 1.0
fact1_mat = np.tile(fact1.reshape(1, nell), (nz, 1))
fact2_mat = np.tile(fact2.reshape(1, nell), (nz, 1))
fac_to_sum[:, :, i] = fact1_mat * fact2_mat
return fac_to_sum
def compute_fact_dfact_kappa3(zbin, sm1, lmax = 1024):
'''
It computes the smoothed (by a top-hat filter) 2nd moments of the density field given the
3D power spectrum at fixed z. (k=l/chi(z)).
'''
nz = len(zbin)
nell = lmax
ell = np.arange(lmax)
fact_dfact_kappa3_to_sum = np.zeros((nz, nell, 2))
sm_rad1 =(sm1/60.)*np.pi/180.
fact1 = (scipy.special.eval_legendre(ell-1,np.cos(sm_rad1))-scipy.special.eval_legendre(ell+1,np.cos(sm_rad1)))/(4*np.pi*(1-np.cos(sm_rad1)))
fact1[0] = 1./4*np.pi
fact_dfact_kappa3_to_sum[:,:,0] = np.tile(fact1.reshape(1, nell), (nz, 1))
d_fact1 = scipy.special.eval_legendre(ell,np.cos(sm_rad1))*np.sin(sm_rad1)/(1-np.cos(sm_rad1))
d_fact1 -= fact1*(4*np.pi/(2*ell+1))*np.sin(sm_rad1)/(1-np.cos(sm_rad1))
d_fact1[0] = 0 #0th Wl = 1
fact_dfact_kappa3_to_sum[:,:,1] = np.tile(d_fact1.reshape(1, nell), (nz, 1))
return fact_dfact_kappa3_to_sum
def compute_abc_kappa3(zbin, Dz_nz, knl_nz, ns_mat, scheme='SC'):
nz = len(zbin)
nell = lmax
ell = np.arange(lmax)
knl_mat = np.tile(knl_nz.reshape(nz, 1), (1, nell))
Dz_mat = np.tile(Dz_nz.reshape(nz, 1), (1, nell))
chi_zbin = results_LCDM.comoving_radial_distance(zbin)
ell = np.arange(lmax)
z_mat = np.tile(zbin.reshape(nz, 1), (1, nell))
chi_mat = np.tile(chi_zbin.reshape(nz, 1), (1, nell))
ell_mat = np.tile(ell.reshape(1, nell), (nz, 1))
k_mat = ell_mat/chi_mat
q_mat = k_mat/knl_mat
# Initialise coefficients small-scales fitting formulae.
if scheme == 'SC':
coeff = [0.25,3.5,2.,1.,2.,-0.2,1.,0.,0.]
elif scheme == 'GM':
coeff = [0.484,3.740,-0.849,0.392,1.013,-0.575,0.128,-0.722,-0.926]
a = (1. + ((sig8*Dz_mat)**coeff[5])*(0.7*(4.-2.**ns_mat)/(1.+2.**(2.*ns_mat+1)))**0.5*(q_mat*coeff[0])**(ns_mat+coeff[1]))/(1.+(q_mat*coeff[0])**(ns_mat+coeff[1]))
b = (1. + 0.2*coeff[2]*(ns_mat+3)*(q_mat*coeff[6])**(ns_mat+coeff[7]+3))/(1.+(q_mat*coeff[6])**(ns_mat+coeff[7]+3.5));
c = (1. + 4.5*coeff[3]/(1.5+(ns_mat+3)**4)*(q_mat*coeff[4])**(ns_mat+3+coeff[8]))/(1+(q_mat*coeff[4])**(ns_mat+3.5+coeff[8]));
a[:,0] = 1.
b[:,0] = 1.
c[:,0] = 1.
return a, b, c
def compute_masked_m12_from_factosum(zbin, P_lz_mat, fac_to_sum, abc=1.0):
nz = len(zbin)
moments = np.zeros((nz, 1))
# for i, sm in enumerate(zip(smoothing_scales1,smoothing_scales2)):
moments[:, 0] = np.sum(abc*fac_to_sum[:,:,0]*P_lz_mat, axis=1)
if zbin[0] == 0:
moments[0,:] = 0.0*P_lz_mat.shape[1]
return moments
def compute_masked_m123_vec(P_lz_mat, zbin, a, b, c, smoothing_scales1, smoothing_scales2, smoothing_scales3, lmax = 1024, scheme = 'LIN', mask = None):
'''
It computes the smoothed (by a top-hat filter) 2nd moments of the density field given the
3D power spectrum at fixed z. (k=l/chi(z)).
'''
nz = len(zbin)
nell = lmax
moments12a = compute_masked_m12_from_factosum(zbin, Plz_mat, fac_to_sum_all[(smoothing_scales1, smoothing_scales2)], abc=a)
moments13a = compute_masked_m12_from_factosum(zbin, Plz_mat, fac_to_sum_all[(smoothing_scales1, smoothing_scales3)], abc=a)
moments23a = compute_masked_m12_from_factosum(zbin, Plz_mat, fac_to_sum_all[(smoothing_scales2, smoothing_scales3)], abc=a)
moments12b = compute_masked_m12_from_factosum(zbin, Plz_mat, fac_to_sum_all[(smoothing_scales1, smoothing_scales2)], abc=b)
moments13b = compute_masked_m12_from_factosum(zbin, Plz_mat, fac_to_sum_all[(smoothing_scales1, smoothing_scales3)], abc=b)
moments23b = compute_masked_m12_from_factosum(zbin, Plz_mat, fac_to_sum_all[(smoothing_scales2, smoothing_scales3)], abc=b)
moments12c = compute_masked_m12_from_factosum(zbin, Plz_mat, fac_to_sum_all[(smoothing_scales1, smoothing_scales2)], abc=c)
moments13c = compute_masked_m12_from_factosum(zbin, Plz_mat, fac_to_sum_all[(smoothing_scales1, smoothing_scales3)], abc=c)
moments23c = compute_masked_m12_from_factosum(zbin, Plz_mat, fac_to_sum_all[(smoothing_scales2, smoothing_scales3)], abc=c)
smoothing_scales1 = np.array([smoothing_scales1])
smoothing_scales2 = np.array([smoothing_scales2])
smoothing_scales3 = np.array([smoothing_scales3])
d_moments12_d_ln1b = np.zeros((nz, len(smoothing_scales1)))
d_moments12_d_ln2b = np.zeros((nz, len(smoothing_scales1)))
d_moments13_d_ln1b = np.zeros((nz, len(smoothing_scales1)))
d_moments13_d_ln3b = np.zeros((nz, len(smoothing_scales1)))
d_moments23_d_ln2b = np.zeros((nz, len(smoothing_scales1)))
d_moments23_d_ln3b = np.zeros((nz, len(smoothing_scales1)))
for i, sm in enumerate(zip(smoothing_scales1,smoothing_scales2,smoothing_scales3)):
# convert scale to radians ***
sm_rad1 =(sm[0]/60.)*np.pi/180.
sm_rad2 =(sm[1]/60.)*np.pi/180.
sm_rad3 =(sm[2]/60.)*np.pi/180.
fact1 = fact_dfact_kappa3_to_sum_all[sm[0]][:,:,0]
fact2 = fact_dfact_kappa3_to_sum_all[sm[1]][:,:,0]
fact3 = fact_dfact_kappa3_to_sum_all[sm[2]][:,:,0]
d_fact1 = fact_dfact_kappa3_to_sum_all[sm[0]][:,:,1]
d_fact2 = fact_dfact_kappa3_to_sum_all[sm[1]][:,:,1]
d_fact3 = fact_dfact_kappa3_to_sum_all[sm[2]][:,:,1]
d_moments12_d_ln1b[:,i] = (sm_rad1*np.sum(b*fact2*d_fact1*P_lz_mat, axis=1))
d_moments12_d_ln2b[:,i] = (sm_rad2*np.sum(b*fact1*d_fact2*P_lz_mat, axis=1))
d_moments13_d_ln1b[:,i] = (sm_rad1*np.sum(b*fact3*d_fact1*P_lz_mat, axis=1))
d_moments13_d_ln3b[:,i] = (sm_rad3*np.sum(b*fact1*d_fact3*P_lz_mat, axis=1))
d_moments23_d_ln2b[:,i] = (sm_rad2*np.sum(b*fact3*d_fact2*P_lz_mat, axis=1))
d_moments23_d_ln3b[:,i] = (sm_rad3*np.sum(b*fact2*d_fact3*P_lz_mat, axis=1))
mu = 5/7
moments = 2*mu*moments13a*moments23a + (1-mu)*moments13c*moments23c
moments += 0.5*(moments13b*d_moments23_d_ln3b + moments23b*d_moments13_d_ln3b)
moments += 2*mu*moments12a*moments23a + (1-mu)*moments12c*moments23c
moments += 0.5*(moments12b*d_moments23_d_ln2b + moments23b*d_moments12_d_ln2b)
moments += 2*mu*moments13a*moments12a + (1-mu)*moments13c*moments12c
moments += 0.5*(moments13b*d_moments12_d_ln1b + moments12b*d_moments13_d_ln1b)
if zbin[0] == 0:
moments[0,:] = 0.0*P_lz_mat.shape[1]
return np.array(moments)
def kappa2_vec(corr_all, zbin, chibin, qi1, qi2, sm1, sm2, lmax = 1024, mask = None):
corr = corr_all[(sm1, sm2)]
intgnd = qi1*qi2*corr.T/chibin**2
intgnd[:,0] = 0
res = np.trapz(intgnd , chibin, axis = 1)
return res
def kappa123_vec(corr_all, zbin, chibin, qi1, qi2, qi3, sm1, sm2, sm3, lmax = 1024, scheme = "LIN", mask = None):
corr = corr_all[(sm1, sm2, sm3)]
intgnd = qi1*qi2*qi3*corr.T/chibin**4
intgnd[:,0] = 0
res = np.trapz(intgnd, chibin, axis = 1)
return res
#get relevant redshift distribution
nzbin2 = np.genfromtxt("./nzbins/FLASK_2.txt")
nzbin3 = np.genfromtxt("./nzbins/FLASK_3.txt")
zbin = nzbin2[:,0]
nz2 = nzbin2[:,1]
nz3 = nzbin3[:,1]
dz = zbin[1]-zbin[0]
sm = np.array([21.0,33.6,54.,86., 137.6, 220.16])
scheme='SC'
chibin = results_LCDM.comoving_radial_distance(zbin)
qi_b2 = np.zeros(len(zbin))
for i in range(len(zbin)):
foo = nz2[i:]*(1-chibin[i]/chibin[i:])
qi_b2[i] = np.trapz(foo, zbin[i:])
qi_b2 = (1.5*pars_LCDM.omegam*(pars_LCDM.H0/(camb.constants.c/1000.))**2)*(1+zbin)*qi_b2*chibin
qi_b2[0] = 0
qi_b3 = np.zeros(len(zbin))
for i in range(len(zbin)):
foo = nz3[i:]*(1-chibin[i]/chibin[i:])
qi_b3[i] = np.trapz(foo, zbin[i:])
qi_b3 = (1.5*pars_LCDM.omegam*(pars_LCDM.H0/(camb.constants.c/1000.))**2)*(1+zbin)*qi_b3*chibin
qi_b3[0] = 0
Plz_mat = compute_Plz_mat(PK, zbin, lmax = lmax, mask = ME)
Dz_nz, knl_nz, ns_mat = get_Dz_knletc(PK_L, zbin, lmax=lmax)
a_k3, b_k3, c_k3 = compute_abc_kappa3(zbin, Dz_nz, knl_nz, ns_mat, scheme=scheme)
fac_to_sum_all = {}
for i in range(len(sm)):
for j in range(len(sm)):
fac_to_sum_all[(sm[i], sm[j])] = compute_factosum(zbin, np.array([sm[i]]), np.array([sm[j]]), lmax = lmax)
fact_dfact_kappa3_to_sum_all = {}
for i in range(len(sm)):
fact_dfact_kappa3_to_sum_all[(sm[i])] = compute_fact_dfact_kappa3(zbin, sm[i], lmax = lmax)
corr2_all = {}
for i in range(len(sm)):
for j in range(len(sm)):
if i <= j:
corr2_all[(sm[i], sm[j])] = compute_masked_m12_from_factosum(zbin, Plz_mat, fac_to_sum_all[(sm[i], sm[j])])
else:
corr2_all[(sm[i], sm[j])] = corr2_all[(sm[j], sm[i])]
kp2_2_2 = np.zeros((len(sm),len(sm)))
kp2_2_3 = np.zeros((len(sm),len(sm)))
kp2_3_3 = np.zeros((len(sm),len(sm)))
for k in range(3):
if k == 0:
for i in range(len(sm)):
for j in range(len(sm)):
if i <= j:
kp2_2_2[i,j] = kappa2_vec(corr2_all, zbin, chibin, qi_b2, qi_b2, sm[i], sm[j], mask = ME)
else:
kp2_2_2[i,j] = kp2_2_2[j,i]
elif k == 1:
for i in range(len(sm)):
for j in range(len(sm)):
if i <= j:
kp2_2_3[i,j] = kappa2_vec(corr2_all, zbin, chibin, qi_b2, qi_b3, sm[i], sm[j], mask = ME)
else:
kp2_2_3[i,j] = kp2_2_3[j,i]
elif k == 2:
for i in range(len(sm)):
for j in range(len(sm)):
if i <= j:
kp2_3_3[i,j] = kappa2_vec(corr2_all, zbin, chibin, qi_b3, qi_b3, sm[i], sm[j], mask = ME)
else:
kp2_3_3[i,j] = kp2_3_3[j,i]
save_obj('./fisher_new/kp2param0_2_2', kp2_2_2)
save_obj('./fisher_new/kp2param0_2_3', kp2_2_3)
save_obj('./fisher_new/kp2param0_3_3', kp2_3_3)
corr3_all = {}
for i in range(len(sm)):
for j in range(len(sm)):
for k in range(len(sm)):
if (k >= j and j >= i):
corr3_all[(sm[i], sm[j], sm[k])] = compute_masked_m123_vec(Plz_mat, zbin, a_k3, b_k3, c_k3, sm[i], sm[j], sm[k], lmax = lmax, scheme=scheme, mask=mask)
else:
foo = np.sort([i, j, k])
corr3_all[(sm[i], sm[j], sm[k])] = corr3_all[(sm[foo[0]], sm[foo[1]], sm[foo[2]])]
kp3_2_2_2 = np.zeros((len(sm),len(sm),len(sm)))
kp3_3_2_2 = np.zeros((len(sm),len(sm),len(sm)))
kp3_2_3_3 = np.zeros((len(sm),len(sm),len(sm)))
kp3_3_3_3 = np.zeros((len(sm),len(sm),len(sm)))
for l in range(4):
if l == 0:
for i in range(len(sm)):
for j in range(len(sm)):
for k in range(len(sm)):
kp3_2_2_2[i,j,k] = kappa123_vec(corr3_all, zbin, chibin, qi_b2, qi_b2, qi_b2, sm[i], sm[j], sm[k], scheme ='SC', mask = ME)
elif l == 1:
for i in range(len(sm)):
for j in range(len(sm)):
for k in range(len(sm)):
kp3_3_2_2[i,j,k] = kappa123_vec(corr3_all, zbin, chibin, qi_b3, qi_b2, qi_b2, sm[i], sm[j], sm[k], scheme ='SC', mask = ME)
elif l == 2:
for i in range(len(sm)):
for j in range(len(sm)):
for k in range(len(sm)):
kp3_2_3_3[i,j,k] = kappa123_vec(corr3_all, zbin, chibin, qi_b2, qi_b3, qi_b3, sm[i], sm[j], sm[k], scheme ='SC', mask = ME)
elif l == 3:
for i in range(len(sm)):
for j in range(len(sm)):
for k in range(len(sm)):
kp3_3_3_3[i,j,k] = kappa123_vec(corr3_all, zbin, chibin, qi_b3, qi_b3, qi_b3, sm[i], sm[j], sm[k], scheme ='SC', mask = ME)
save_obj('./fisher_new/kp3param0SC_2_2_2', kp3_2_2_2)
save_obj('./fisher_new/kp3param0SC_3_2_2', kp3_3_2_2)
save_obj('./fisher_new/kp3param0SC_2_3_3', kp3_2_3_3)
save_obj('./fisher_new/kp3param0SC_3_3_3', kp3_3_3_3)
print(time.time() - t0_init)
# In[ ]: