-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patheval_sPCE.py
148 lines (127 loc) · 4.63 KB
/
eval_sPCE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import math
import argparse
from collections import defaultdict
import pandas as pd
import torch
import pyro
import mlflow
from experiment_tools.pyro_tools import auto_seed
from experiment_tools.output_utils import get_mlflow_meta
from estimators.mi import PriorContrastiveEstimation, NestedMonteCarloEstimation
def evaluate_run(
experiment_id,
run_id,
num_experiments_to_perform,
num_inner_samples,
device,
n_rollout,
seed=-1,
# if checkpoints were stored (as model_postfix), pass here
model_postfix="",
):
pyro.clear_param_store()
artifact_path = f"mlruns/{experiment_id}/{run_id}/artifacts"
model_location = f"{artifact_path}/model{model_postfix}"
seed = auto_seed(seed)
factor = 16
n_rollout = n_rollout // factor
EIGs_mean = pd.DataFrame(columns=["lower", "upper"])
EIGs_se = pd.DataFrame(columns=["lower", "upper"])
for t_exp in num_experiments_to_perform:
# load model, set number of experiments
trained_model = mlflow.pytorch.load_model(model_location, map_location=device)
if t_exp:
trained_model.T = t_exp
else:
t_exp = trained_model.T
pce_loss_upper = NestedMonteCarloEstimation(
trained_model.model, factor, num_inner_samples
)
pce_loss_lower = PriorContrastiveEstimation(
trained_model.model, factor, num_inner_samples
)
auto_seed(seed)
EIG_proxy_upper = torch.tensor(
[-pce_loss_upper.loss() for _ in range(n_rollout)]
)
auto_seed(seed)
EIG_proxy_lower = torch.tensor(
[-pce_loss_lower.loss() for _ in range(n_rollout)]
)
EIGs_mean.loc[t_exp, "lower"] = EIG_proxy_lower.mean().item()
EIGs_mean.loc[t_exp, "upper"] = EIG_proxy_upper.mean().item()
EIGs_se.loc[t_exp, "lower"] = EIG_proxy_lower.std().item() / math.sqrt(
n_rollout
)
EIGs_se.loc[t_exp, "upper"] = EIG_proxy_upper.std().item() / math.sqrt(
n_rollout
)
EIGs_mean["stat"] = "mean"
EIGs_se["stat"] = "se"
res = pd.concat([EIGs_mean, EIGs_se])
print(res)
if not os.path.exists("mlflow_outputs"):
os.makedirs("mlflow_outputs")
res.to_csv(f"mlflow_outputs/eval{model_postfix}.csv")
with mlflow.start_run(run_id=run_id, experiment_id=experiment_id) as run:
mlflow.log_artifact(
f"mlflow_outputs/eval{model_postfix}.csv", artifact_path="evaluation",
)
if len(num_experiments_to_perform) == 1:
mlflow.log_metric(
f"eval_mi_lower{model_postfix}", EIGs_mean.loc[t_exp, "lower"],
)
return res
def evaluate_experiment(
experiment_id,
num_experiments_to_perform=[None],
num_inner_samples=int(5e5),
device="cuda",
n_rollout=2048 * 2,
seed=-1,
model_postfix="",
):
filter_string = "params.status='complete'"
meta = get_mlflow_meta(experiment_id=experiment_id, filter_string=filter_string)
# run those that haven't yet been evaluated
meta = [
m for m in meta if f"eval_mi_lower{model_postfix}" not in m.data.metrics.keys()
]
meta = [m for m in meta if "baseline_type" not in m.data.params.keys()]
experiment_run_ids = [run.info.run_id for run in meta]
print(experiment_run_ids)
for i, run_id in enumerate(experiment_run_ids):
print(f"Evaluating run {i+1} out of {len(experiment_run_ids)} runs...")
evaluate_run(
experiment_id=experiment_id,
run_id=run_id,
num_experiments_to_perform=num_experiments_to_perform,
num_inner_samples=num_inner_samples,
device=device,
n_rollout=n_rollout,
seed=-1,
model_postfix=model_postfix,
)
print("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Deep Adaptive Design: Model Evaluation via sPCE."
)
parser.add_argument("--experiment-id", type=str)
parser.add_argument("--device", default="cuda", type=str)
parser.add_argument("--seed", default=-1, type=int)
parser.add_argument("--n-rollout", default=2048 * 2, type=int)
parser.add_argument("--num-experiments-to-perform", nargs="+", default=[None])
args = parser.parse_args()
args.num_experiments_to_perform = [
int(x) if x else x for x in args.num_experiments_to_perform
]
evaluate_experiment(
experiment_id=args.experiment_id,
n_rollout=args.n_rollout,
seed=args.seed,
num_inner_samples=int(1e5),
num_experiments_to_perform=args.num_experiments_to_perform,
device=args.device,
)