-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroot-finding.lua
executable file
·160 lines (133 loc) · 3.75 KB
/
root-finding.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
-- bisect.lua
-- bisection method for solving non-linear equations
function bisect(f,a,b,fa,fb)
local delta=1e-10 -- tolerance
local c=(a+b)/2
if c==a or c==b or math.abs(a-b)<delta then
return c,b-a end
n=n+1
local fc=f(c)
if fa*fc<0 then
return bisect(f,a,c,fa,fc)
else
return bisect(f,c,b,fc,fb)
end
end
-- find root of f in the inverval [a,b]. needs f(a)*f(b)<0
function solve(f,a,b)
n=0
local z,e=bisect(f,a,b,f(a),f(b))
io.write(string.format("after %d steps, root is %.17g with error %.1e, f=%.1e\n",n,z,e,f(z)))
end
-- our function
function f(x)
return x*x*x-x-1
end
-- find zero in [1,2]
solve(f,1,2)
--fixed-point transform
function FixedPointTransform(func, guess1)
function closeEnough(v1,v2)
local eps=0.00001 --tolerance
return math.abs(v1-v2)<eps
end
function try(guess)
local next=func(guess)
if closeEnough(guess,next) then
return next
else return try(next)
end
end
return try(guess1)
end
print("the fixed point of cos starting at 1 is ",
FixedPointTransform(math.cos,1))
function f(x)
return math.sin(x) + math.cos(x)
end
print("the fixed point of sin x + cos x starting at 1 is ",
FixedPointTransform(f,1))
--Exercise 13, pg. 305, Ch.5.1, Func. Anal.
--f1 and g are related such that the fixed point of g is the fixed point
-- of f1
function f1(x)
return x*x*x + x - 1
end
function g(x)
return 1/(1+x*x)
end
--print("the fixed point of f(x)= x*x*x + x - 1 starting at 0.5:",
-- FixedPointTransform(f1,1.1))
print("the fixed point of g(x)= 1/1+x*x starting at 1:",
FixedPointTransform(g,1))
--Exercise 1.35 Compute the golden ration as a fixed point of
-- the transformation x-> 1+1/x
function deriv(g) --deriv returns function so had to assign to
--function variable then use that to get value.
local dx=0.00001
return function (x) return (g(x+dx)-g(x))/dx end
end
function fib(x) return 1+(1/x)
end
print("the fixed point of x->1+1/x starting at 1 is ",
FixedPointTransform(fib,1))
local log=math.log
function lg(x) return log(1000)/log(x) end
print("the fixed point of x -> log 1000/log x is: ",
FixedPointTransform(lg,1.1))
--Newton's Method
function NewtonMethod(fnc, x0)
local FPT=FixedPointTransform
local d=deriv
function NewtonTransform(g)
local Dg=d(g)
return function(x) return (x-(g(x)/Dg(x))) end
end
local NT=NewtonTransform
return FPT(NT(fnc),x0)
end
function f2(y) return y*y*y-5 end
print("the root of x^3 - 5 is ",
NewtonMethod(f2,3))
--Secant method for finding roots
-- let f be the function whose roots are unknown
-- let x0,x1 be initial values
--then the recurrence relation
-- xn= xn-1 - f(xn-1)((xn-1 - xn-2))/(f(xn-1)-f(xn-2))
--defines the secant method
function y(x) return x*x-3 end -- the function x^2-3
--want to find sqrt(3)
function secantMethod(f,x1)
local eps=0.00001 --tolerance
local x2=f(x1) -- other initial value
local curval= (x1*f(x2) - x2*f(x1))/(f(x2) -f(x1))
while math.abs(curval - x2)> eps do
x1=x2
x2=curval
curval= (x1*f(x2) - x2*f(x1))/(f(x2) -f(x1))
end
return curval
end
print("the root of x^2 - 3 is ",secantMethod(y,2))
--g should be derivative of target
--start .
function gradDescent(g,start)
local cur_x=start
local gamma=0.01
local delta=0.00001
local prev_step_size=1
local max_iters=10000
local iters=0
local prev_x=0
local abs=math.abs
local df=g
while prev_step_size > delta and iters < max_iters do
prev_x=cur_x
cur_x= cur_x - gamma * df(prev_x)
prev_step_size = abs(cur_x - prev_x)
iters=iters +1
end
print("the local minimum occurs at ", cur_x)
end
local df=function(x) return 4*x*x*x -9*x*x end
gradDescent(df,6)