-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathedar.py
51 lines (38 loc) · 1.19 KB
/
edar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import common
import torch
import torch.nn as nn
class EDAR(nn.Module):
def __init__(self, conv=common.default_conv):
super(EDAR, self).__init__()
n_resblock = 8
n_feats = 64
kernel_size = 3
#DIV 2K mean
rgb_mean = (0.4488, 0.4371, 0.4040)
rgb_std = (1.0, 1.0, 1.0)
self.sub_mean = common.MeanShift(rgb_mean, rgb_std)
# define head module
m_head = [conv(3, n_feats, kernel_size)]
# define body module
m_body = [
common.ResBlock(
conv, n_feats, kernel_size
) for _ in range(n_resblock)
]
m_body.append(conv(n_feats, n_feats, kernel_size))
# define tail module
m_tail = [
conv(n_feats, 3, kernel_size)
]
self.add_mean = common.MeanShift(rgb_mean, rgb_std, 1)
self.head = nn.Sequential(*m_head)
self.body = nn.Sequential(*m_body)
self.tail = nn.Sequential(*m_tail)
def forward(self, x):
x = self.sub_mean(x)
x = self.head(x)
res = self.body(x)
res += x
x = self.tail(res)
x = self.add_mean(x)
return torch.clamp(x,0.0,1.0)