forked from HappyShadowWalker/ChineseTextClassify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FeatureWeight.py
103 lines (87 loc) · 3.44 KB
/
FeatureWeight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
__author__ = 'ShadowWalker'
# import FeatureSelecion
import math
import sys
# 采用TF-IDF 算法对选取得到的特征进行计算权重
DocumentCount = 200 # 每个类别选取200篇文档
ClassCode = ['C000007', 'C000008', 'C000010', 'C000013', 'C000014', 'C000016', 'C000020', 'C000022', 'C000023', 'C000024']
# 构建每个类别的词Set
# 分词后的文件路径
# textCutBasePath = "G:\\ChineseTextClassify\\SogouCCut\\"
textCutBasePath = sys.path[0] + "\\SogouCCut\\"
def readFeature(featureName):
featureFile = open(featureName, 'r')
featureContent = featureFile.read().split('\n')
featureFile.close()
feature = list()
for eachfeature in featureContent:
eachfeature = eachfeature.split(" ")
if (len(eachfeature)==2):
feature.append(eachfeature[1])
# print(feature)
return feature
# 读取所有类别的训练样本到字典中,每个文档是一个list
def readFileToList(textCutBasePath, ClassCode, DocumentCount):
dic = dict()
for eachclass in ClassCode:
currClassPath = textCutBasePath + eachclass + "\\"
eachclasslist = list()
for i in range(DocumentCount):
eachfile = open(currClassPath+str(i)+".cut")
eachfilecontent = eachfile.read()
eachfilewords = eachfilecontent.split(" ")
eachclasslist.append(eachfilewords)
# print(eachfilewords)
dic[eachclass] = eachclasslist
return dic
# 计算特征的逆文档频率
def featureIDF(dic, feature, dffilename):
dffile = open(dffilename, "w")
dffile.close()
dffile = open(dffilename, "a")
totaldoccount = 0
idffeature = dict()
dffeature = dict()
for eachfeature in feature:
docfeature = 0
for key in dic:
totaldoccount = totaldoccount + len(dic[key])
classfiles = dic[key]
for eachfile in classfiles:
if eachfeature in eachfile:
docfeature = docfeature + 1
# 计算特征的逆文档频率
featurevalue = math.log(float(totaldoccount)/(docfeature+1))
dffeature[eachfeature] = docfeature
# 写入文件,特征的文档频率
dffile.write(eachfeature + " " + str(docfeature)+"\n")
# print(eachfeature+" "+str(docfeature))
idffeature[eachfeature] = featurevalue
dffile.close()
return idffeature
# 计算Feature's TF-IDF 值
def TFIDFCal(feature, dic,idffeature,filename):
file = open(filename, 'w')
file.close()
file = open(filename, 'a')
for key in dic:
classFiles = dic[key]
# 谨记字典的键是无序的
classid = ClassCode.index(key)
for eachfile in classFiles:
# 对每个文件进行特征向量转化
file.write(str(classid)+" ")
for i in range(len(feature)):
if feature[i] in eachfile:
currentfeature = feature[i]
featurecount = eachfile.count(feature[i])
tf = float(featurecount)/(len(eachfile))
# 计算逆文档频率
featurevalue = idffeature[currentfeature]*tf
file.write(str(i+1)+":"+str(featurevalue) + " ")
file.write("\n")
dic = readFileToList(textCutBasePath, ClassCode, DocumentCount)
feature = readFeature("SVMFeature.txt")
print(len(feature))
idffeature = featureIDF(dic, feature, "dffeature.txt")
TFIDFCal(feature, dic,idffeature, "train.svm")