forked from HappyShadowWalker/ChineseTextClassify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TestFeatureWeight.py
80 lines (75 loc) · 2.98 KB
/
TestFeatureWeight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
__author__ = 'ShadowWalker'
import math
import sys
ClassCode = ['C000007', 'C000008', 'C000010', 'C000013', 'C000014', 'C000016', 'C000020', 'C000022', 'C000023', 'C000024']
# textCutBasePath = "G:\\ChineseTextClassify\\SogouCCut\\"
textCutBasePath = sys.path[0] + "\\SogouCCut\\"
TestDocumentCount = 20
DocumentCount = 200
TrainDocumentCount = 2000
# 读取特征
def readFeature(featureName):
featureFile = open(featureName, 'r')
featureContent = featureFile.read().split('\n')
featureFile.close()
feature = list()
for eachfeature in featureContent:
eachfeature = eachfeature.split(" ")
if (len(eachfeature)==2):
feature.append(eachfeature[1])
return feature
# 读取特征的文档计数
def readDfFeature(dffilename):
dffeaturedic = dict()
dffile = open(dffilename, "r")
dffilecontent = dffile.read().split("\n")
dffile.close()
for eachline in dffilecontent:
eachline = eachline.split(" ")
if len(eachline) == 2:
dffeaturedic[eachline[0]] = eachline[1]
# print(eachline[0] + ":"+eachline[1])
# print(len(dffeaturedic))
return dffeaturedic
# 对测试集进行特征向量表示
def readFileToList(textCutBasePath, ClassCode, DocumentCount, TestDocumentCount):
dic = dict()
for eachclass in ClassCode:
currClassPath = textCutBasePath + eachclass + "\\"
eachclasslist = list()
for i in range(DocumentCount, DocumentCount+TestDocumentCount):
#print(currClassPath+str(i)+".cut")
eachfile = open(currClassPath+str(i)+".cut")
eachfilecontent = eachfile.read()
eachfilewords = eachfilecontent.split(" ")
eachclasslist.append(eachfilewords)
# print(eachfilewords)
dic[eachclass] = eachclasslist
return dic
def TFIDFCal(feature, dic,dffeaturedic,filename):
file = open(filename, 'w')
file.close()
file = open(filename, 'a')
# classid = 0
for key in dic:
# print(key)
classFiles = dic[key]
classid = ClassCode.index(key)
for eachfile in classFiles:
# 对每个文件进行特征向量转化
file.write(str(classid)+" ")
for i in range(len(feature)):
if feature[i] in eachfile:
currentfeature = feature[i]
featurecount = eachfile.count(feature[i])
tf = float(featurecount)/(len(eachfile))
# 计算逆文档频率
idffeature = math.log(float(TrainDocumentCount+1)/(int(dffeaturedic[currentfeature])+2))
featurevalue = idffeature * tf
file.write(str(i+1)+":"+str(featurevalue) + " ")
file.write("\n")
# 对200至250序号的文档作为测试集
feature = readFeature("SVMFeature.txt")
dffeaturedic = readDfFeature("dffeature.txt")
dic = readFileToList(textCutBasePath, ClassCode, DocumentCount, TestDocumentCount)
TFIDFCal(feature, dic, dffeaturedic, "test.svm")