forked from AllenCellModeling/pytorch_integrated_cell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorr_stats.py
84 lines (69 loc) · 2.18 KB
/
corr_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# copy and pasted from https://github.com/pytorch/pytorch/issues/1254
import torch
import pdb
def pearsonr(x, y):
"""
Mimics `scipy.stats.pearsonr`
Arguments
---------
x : 1D torch.Tensor
y : 1D torch.Tensor
Returns
-------
r_val : float
pearsonr correlation coefficient between x and y
Scipy docs ref:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html
Scipy code ref:
https://github.com/scipy/scipy/blob/v0.19.0/scipy/stats/stats.py#L2975-L3033
Example:
>>> x = np.random.randn(100)
>>> y = np.random.randn(100)
>>> sp_corr = scipy.stats.pearsonr(x, y)[0]
>>> th_corr = pearsonr(torch.from_numpy(x), torch.from_numpy(y))
>>> np.allclose(sp_corr, th_corr)
"""
mean_x = torch.mean(x)
mean_y = torch.mean(y)
xm = x.sub(mean_x.data[0])
ym = y.sub(mean_y.data[0])
r_num = xm.dot(ym)
r_den = torch.norm(xm, 2) * torch.norm(ym, 2)
r_val = r_num / r_den
return r_val
def corrcoef(x):
"""
Mimics `np.corrcoef`
Arguments
---------
x : 2D torch.Tensor
Returns
-------
c : torch.Tensor
if x.size() = (5, 100), then return val will be of size (5,5)
Numpy docs ref:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html
Numpy code ref:
https://github.com/numpy/numpy/blob/v1.12.0/numpy/lib/function_base.py#L2933-L3013
Example:
>>> x = np.random.randn(5,120)
# result is a (5,5) matrix of correlations between rows
>>> np_corr = np.corrcoef(x)
>>> th_corr = corrcoef(torch.from_numpy(x))
>>> np.allclose(np_corr, th_corr.numpy())
# [out]: True
"""
# calculate covariance matrix of rows
mean_x = torch.mean(x, 1).unsqueeze(1)
xm = x.sub(mean_x.expand_as(x))
c = xm.mm(xm.t())
c = c / (x.size(1) - 1)
# normalize covariance matrix
d = torch.diag(c)
stddev = torch.pow(d, 0.5)
c = c.div(stddev.expand_as(c))
c = c.div(stddev.expand_as(c).t())
# clamp between -1 and 1
# probably not necessary but numpy does it
c = torch.clamp(c, -1.0, 1.0)
return c