-
Notifications
You must be signed in to change notification settings - Fork 4
/
segmentation_module.py
338 lines (271 loc) · 11.8 KB
/
segmentation_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import copy
import math
import os
from functools import partial, reduce
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributed
from torch.nn import init
import inplace_abn
import models
from inplace_abn import ABN, InPlaceABN, InPlaceABNSync
from modules import DeeplabV3
def make_model(opts, classes=None):
if opts.norm_act == 'iabn_sync':
norm = partial(InPlaceABNSync, activation="leaky_relu", activation_param=.01)
elif opts.norm_act == 'iabn':
norm = partial(InPlaceABN, activation="leaky_relu", activation_param=.01)
elif opts.norm_act == 'abn':
norm = partial(ABN, activation="leaky_relu", activation_param=.01)
else:
norm = nn.BatchNorm2d # not synchronized, can be enabled with apex
if opts.norm_act == "iabn_sync_test":
opts.norm_act = "iabn_sync"
body = models.__dict__[f'net_{opts.backbone}'](norm_act=norm, output_stride=opts.output_stride)
if not opts.no_pretrained:
pretrained_path = os.path.join(opts.code_directory, f'pretrained/{opts.backbone}_{opts.norm_act}.pth.tar')
pre_dict = torch.load(pretrained_path, map_location='cpu')
for key in copy.deepcopy(list(pre_dict['state_dict'].keys())):
pre_dict['state_dict'][key[7:]] = pre_dict['state_dict'].pop(key)
del pre_dict['state_dict']['classifier.fc.weight']
del pre_dict['state_dict']['classifier.fc.bias']
body.load_state_dict(pre_dict['state_dict'])
del pre_dict # free memory
head_channels = 256
head = DeeplabV3(
body.out_channels,
head_channels,
256,
norm_act=norm,
out_stride=opts.output_stride,
pooling_size=opts.pooling
)
if classes is not None:
model = IncrementalSegmentationModule(
body,
head,
head_channels,
classes=classes,
fusion_mode=opts.fusion_mode,
nb_background_modes=opts.nb_background_modes,
multimodal_fusion=opts.multimodal_fusion,
use_cosine=opts.cosine,
disable_background=opts.disable_background,
only_base_weights=opts.base_weights,
opts=opts
)
else:
model = SegmentationModule(body, head, head_channels, opts.num_classes, opts.fusion_mode)
return model
def flip(x, dim):
indices = [slice(None)] * x.dim()
indices[dim] = torch.arange(x.size(dim) - 1, -1, -1, dtype=torch.long, device=x.device)
return x[tuple(indices)]
class IncrementalSegmentationModule(nn.Module):
def __init__(
self,
body,
head,
head_channels,
classes,
ncm=False,
fusion_mode="mean",
nb_background_modes=1,
multimodal_fusion="sum",
use_cosine=False,
disable_background=False,
only_base_weights=False,
opts=None
):
super(IncrementalSegmentationModule, self).__init__()
self.body = body
self.head = head
# classes must be a list where [n_class_task[i] for i in tasks]
assert isinstance(classes, list), \
"Classes must be a list where to every index correspond the num of classes for that task"
use_bias = not use_cosine
if nb_background_modes > 1:
classes[0] -= 1
classes = [nb_background_modes] + classes
if only_base_weights:
classes = [classes[0]]
self.cls = nn.ModuleList([nn.Conv2d(head_channels, c, 1, bias=use_bias) for c in classes])
self.classes = classes
self.head_channels = head_channels
self.tot_classes = reduce(lambda a, b: a + b, self.classes)
self.means = None
self.multi_modal_background = nb_background_modes > 1
self.disable_background = disable_background
self.nb_background_modes = nb_background_modes
self.multimodal_fusion = multimodal_fusion
self.use_cosine = use_cosine
if use_cosine:
self.scalar = nn.Parameter(torch.tensor(1.)).float()
assert not self.multi_modal_background
else:
self.scalar = None
self.in_eval = False
def align_weight(self, align_type):
old_weight_norm = self._compute_weights_norm(self.cls[:-1], only=align_type)
new_weight_norm = self._compute_weights_norm(self.cls[-1:])
gamma = old_weight_norm / new_weight_norm
self.cls[-1].weight.data = gamma * self.cls[-1].weight.data
def _compute_weights_norm(self, convs, only="all"):
c = 0
s = 0.
for i, conv in enumerate(convs):
w = conv.weight.data[..., 0, 0]
if only == "old" and i == 0:
w = w[1:]
elif only == "background" and i == 0:
w = w[:1]
s += w.norm(dim=1).sum()
c += w.shape[0]
return s / c
def _network(self, x, ret_intermediate=False, only_bg=False):
#self.model.apply(cast_running_stats)
x_b, attentions = self.body(x)
x_pl = self.head(x_b)
out = []
if self.use_cosine:
x_clf = x_pl.permute(0, 2, 3, 1)
x_clf = x_clf.reshape(x_pl.shape[0] * x_pl.shape[2] * x_pl.shape[3], x_pl.shape[1])
x_clf = F.normalize(x_clf, dim=1, p=2)
x_clf = x_clf.view(x_pl.shape[0], x_pl.shape[2], x_pl.shape[3], x_pl.shape[1])
x_clf = x_clf.permute(0, 3, 1, 2)
#x_clf = F.normalize(x_pl, dim=1, p=2)
else:
x_clf = x_pl
if only_bg:
return self.cls[0](x_pl)
else:
for i, mod in enumerate(self.cls):
if i == 0 and self.multi_modal_background:
out.append(self.fusion(mod(x_pl)))
elif self.use_cosine:
w = F.normalize(mod.weight, dim=1, p=2)
out.append(F.conv2d(x_pl, w))
else:
out.append(mod(x_pl))
x_o = torch.cat(out, dim=1)
if self.disable_background and self.in_eval:
x_o[:, 0] = 0.
if ret_intermediate:
return x_o, x_b, x_pl, attentions
return x_o
def fusion(self, tensors):
if self.multimodal_fusion == "sum":
return tensors.sum(dim=1, keepdims=True)
elif self.multimodal_fusion == "mean":
return tensors.mean(dim=1, keepdims=True)
elif self.multimodal_fusion == "max":
return tensors.max(dim=1, keepdims=True)[0]
elif self.multimodal_fusion == "softmax":
return (F.softmax(tensors, dim=1) * tensors).sum(dim=1, keepdims=True)
else:
raise NotImplementedError(
f"Unknown fusion mode for multi-modality: {self.multimodal_fusion}."
)
def init_new_classifier(self, device, imp_c=None, copy_bias=False, copy=False, copy_share=0, orig_init=False):
cls = self.cls[-1]
if self.multi_modal_background:
imprinting_w = self.cls[0].weight.sum(dim=0)
bkg_bias = self.cls[0].bias.sum(dim=0)
else:
imprinting_w = self.cls[0].weight[0]
if not self.use_cosine:
bkg_bias = self.cls[0].bias[0]
print('Bkg bias ',bkg_bias)
if orig_init:
cls.weight.data.copy_(imprinting_w)
#cls.weight.data += imprinting_w
if not self.use_cosine:
bias_diff = torch.log(torch.FloatTensor([self.classes[-1] + 1])).to(device)
new_bias = (bkg_bias - bias_diff)
if imp_c is not None and not copy:
cls.weight.data += imprinting_w*(imp_c).float()
print('Selected bkg classifier weights added to new classifier weights', imp_c.sum())
if copy_bias:
cls.bias.data.copy_(new_bias)
self.cls[0].bias[0].data.copy_(new_bias.squeeze(0))
print("Bias copied")
elif copy:
cls.weight.data.copy_(imprinting_w*(imp_c).float()+cls.weight.data*(~imp_c))
print('bkg classifier weights copied to new classifier weights')
if orig_init:
cls.bias.data.copy_(new_bias)
if self.multi_modal_background:
self.cls[0].bias.data.copy_(new_bias.squeeze(0))
else:
if not self.use_cosine:
self.cls[0].bias[0].data.copy_(new_bias.squeeze(0))
print("Original initialization done")
def init_new_classifier_multimodal(self, device, train_loader, init_type):
print("Init new multimodal classifier")
winners = torch.zeros(self.nb_background_modes,
self.classes[-1]).to(device, dtype=torch.long)
nb_old_classes = sum(self.classes[1:-1]) + 1
for images, labels in train_loader:
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
modalities = self.forward(images, only_bg=True)[0].argmax(dim=1)
mask = (0 < labels) & (labels < 255)
modalities = modalities[mask].view(-1)
labels = labels[mask].view(-1)
winners.index_put_(
(modalities, labels - nb_old_classes),
torch.LongTensor([1]).expand_as(modalities).to(device),
accumulate=True
)
bias_diff = torch.log(torch.FloatTensor([self.classes[-1] + 1])).to(device)
if "_" in init_type:
init_type, to_reinit = init_type.split("_")
else:
to_reinit = None
for c in range(self.classes[-1]):
if init_type == "max":
modality = winners[:, c].argmax()
new_weight = self.cls[0].weight.data[modality]
new_bias = (self.cls[0].bias.data[modality] - bias_diff)[0]
elif init_type == "softmax":
modality = winners[:, c].argmax()
weighting = F.softmax(winners[:, c].float(), dim=0)
new_weight = (weighting[:, None, None, None] * self.cls[0].weight.data).sum(dim=0)
new_bias = (weighting * self.cls[0].bias.data).sum(dim=0)
else:
raise ValueError(f"Unknown multimodal init type: {init_type}.")
self.cls[-1].weight.data[c].copy_(new_weight)
self.cls[-1].bias.data[c].copy_(new_bias)
self.cls[0].bias.data[modality].copy_(new_bias)
if to_reinit is not None:
if to_reinit == "init":
init.kaiming_uniform_(self.cls[0].weights.data[modality], a=math.sqrt(5))
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.cls[0].bias.data[modality], -bound, bound)
elif to_reinit == "remove":
self.cls[0].bias.data = torch.cat(
(self.cls[0].bias.data[:modality], self.cls[0].bias.data[modality + 1:])
)
def forward(self, x, scales=None, do_flip=False, ret_intermediate=False, only_bg=False):
out_size = x.shape[-2:]
out = self._network(x, ret_intermediate, only_bg=only_bg)
sem_logits_small = out[0] if ret_intermediate else out
sem_logits = F.interpolate(
sem_logits_small, size=out_size, mode="bilinear", align_corners=False
)
if ret_intermediate:
return sem_logits, {
"body": out[1],
"pre_logits": out[2],
"attentions": out[3] + [out[2]],
"sem_logits_small": sem_logits_small
}
return sem_logits, {}
def fix_bn(self):
for m in self.modules():
if isinstance(m, nn.BatchNorm2d) or isinstance(m, inplace_abn.ABN):
m.eval()
m.weight.requires_grad = False
m.bias.requires_grad = False