forked from NVIDIA/nv-wavenet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnv_wavenet_util.cuh
79 lines (65 loc) · 3.12 KB
/
nv_wavenet_util.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/******************************************************************************
* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
#ifndef __DEEPVOICE_UTIL_H__
#define __DEEPVOICE_UTIL_H__
#include <stdio.h>
#include "cuda_occupancy.h"
#define gpuErrChk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true) {
if (code != cudaSuccess) {
fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
int getOccupancy(int deviceId, size_t blockSize, void* func) {
cudaDeviceProp prop;
gpuErrChk ( cudaGetDeviceProperties(&prop, 0) );
cudaOccDeviceProp occProp = prop;
cudaFuncAttributes attr;
gpuErrChk ( cudaFuncGetAttributes(&attr, func) );
cudaOccFuncAttributes occAttr = attr;
cudaOccDeviceState occState;
cudaOccResult result;
cudaOccMaxActiveBlocksPerMultiprocessor(&result, &occProp, &occAttr, &occState, blockSize, 0);
return result.activeBlocksPerMultiprocessor;
}
__device__ __forceinline__ float loadVolatile(const volatile float* y, int index) {
return y[index];
}
__device__ __forceinline__ void storeVolatile(volatile float* y, int index, float val) {
y[index] = val;
}
__forceinline__ __device__ float sigmoid(float in) {
float ans = 1.f / (1.f + expf(-in));
return ans;
}
__forceinline__ __device__ float _tanh(float in) {
float ans = tanhf(in);
return ans;
}
__device__ __forceinline__ float relu(float f) { return (f < 0.f) ? 0.f : f; }
#endif