-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathtransduction_model.py
executable file
·252 lines (187 loc) · 9.78 KB
/
transduction_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import sys
import numpy as np
import logging
import subprocess
import soundfile as sf
import tqdm
import torch
import torch.nn.functional as F
from read_emg import EMGDataset, SizeAwareSampler
from architecture import Model
from align import align_from_distances
from asr_evaluation import evaluate
from data_utils import phoneme_inventory, decollate_tensor, combine_fixed_length
from vocoder import Vocoder
from absl import flags
FLAGS = flags.FLAGS
flags.DEFINE_integer('batch_size', 32, 'training batch size')
flags.DEFINE_integer('epochs', 80, 'number of training epochs')
flags.DEFINE_float('learning_rate', 1e-3, 'learning rate')
flags.DEFINE_integer('learning_rate_patience', 5, 'learning rate decay patience')
flags.DEFINE_integer('learning_rate_warmup', 500, 'steps of linear warmup')
flags.DEFINE_string('start_training_from', None, 'start training from this model')
flags.DEFINE_float('data_size_fraction', 1.0, 'fraction of training data to use')
flags.DEFINE_float('phoneme_loss_weight', 0.5, 'weight of auxiliary phoneme prediction loss')
flags.DEFINE_float('l2', 1e-7, 'weight decay')
flags.DEFINE_string('output_directory', 'output', 'output directory')
def test(model, testset, device):
model.eval()
dataloader = torch.utils.data.DataLoader(testset, batch_size=32, collate_fn=testset.collate_raw)
losses = []
accuracies = []
phoneme_confusion = np.zeros((len(phoneme_inventory),len(phoneme_inventory)))
seq_len = 200
with torch.no_grad():
for batch in tqdm.tqdm(dataloader, 'Validation', disable=None):
X = combine_fixed_length([t.to(device, non_blocking=True) for t in batch['emg']], seq_len)
X_raw = combine_fixed_length([t.to(device, non_blocking=True) for t in batch['raw_emg']], seq_len*8)
sess = combine_fixed_length([t.to(device, non_blocking=True) for t in batch['session_ids']], seq_len)
pred, phoneme_pred = model(X, X_raw, sess)
loss, phon_acc = dtw_loss(pred, phoneme_pred, batch, True, phoneme_confusion)
losses.append(loss.item())
accuracies.append(phon_acc)
model.train()
return np.mean(losses), np.mean(accuracies), phoneme_confusion #TODO size-weight average
def save_output(model, datapoint, filename, device, audio_normalizer, vocoder):
model.eval()
with torch.no_grad():
sess = datapoint['session_ids'].to(device=device).unsqueeze(0)
X = datapoint['emg'].to(dtype=torch.float32, device=device).unsqueeze(0)
X_raw = datapoint['raw_emg'].to(dtype=torch.float32, device=device).unsqueeze(0)
pred, _ = model(X, X_raw, sess)
y = pred.squeeze(0)
y = audio_normalizer.inverse(y.cpu()).to(device)
audio = vocoder(y).cpu().numpy()
sf.write(filename, audio, 22050)
model.train()
def get_aligned_prediction(model, datapoint, device, audio_normalizer):
model.eval()
with torch.no_grad():
silent = datapoint['silent']
sess = datapoint['session_ids'].to(device).unsqueeze(0)
X = datapoint['emg'].to(device).unsqueeze(0)
X_raw = datapoint['raw_emg'].to(device).unsqueeze(0)
y = datapoint['parallel_voiced_audio_features' if silent else 'audio_features'].to(device).unsqueeze(0)
pred, _ = model(X, X_raw, sess) # (1, seq, dim)
if silent:
costs = torch.cdist(pred, y).squeeze(0)
alignment = align_from_distances(costs.T.detach().cpu().numpy())
pred_aligned = pred.squeeze(0)[alignment]
else:
pred_aligned = pred.squeeze(0)
pred_aligned = audio_normalizer.inverse(pred_aligned.cpu())
model.train()
return pred_aligned
def dtw_loss(predictions, phoneme_predictions, example, phoneme_eval=False, phoneme_confusion=None):
device = predictions.device
predictions = decollate_tensor(predictions, example['lengths'])
phoneme_predictions = decollate_tensor(phoneme_predictions, example['lengths'])
audio_features = [t.to(device, non_blocking=True) for t in example['audio_features']]
phoneme_targets = example['phonemes']
losses = []
correct_phones = 0
total_length = 0
for pred, y, pred_phone, y_phone, silent in zip(predictions, audio_features, phoneme_predictions, phoneme_targets, example['silent']):
assert len(pred.size()) == 2 and len(y.size()) == 2
y_phone = y_phone.to(device)
if silent:
dists = torch.cdist(pred.unsqueeze(0), y.unsqueeze(0))
costs = dists.squeeze(0)
# pred_phone (seq1_len, 48), y_phone (seq2_len)
# phone_probs (seq1_len, seq2_len)
pred_phone = F.log_softmax(pred_phone, -1)
phone_lprobs = pred_phone[:,y_phone]
costs = costs + FLAGS.phoneme_loss_weight * -phone_lprobs
alignment = align_from_distances(costs.T.cpu().detach().numpy())
loss = costs[alignment,range(len(alignment))].sum()
if phoneme_eval:
alignment = align_from_distances(costs.T.cpu().detach().numpy())
pred_phone = pred_phone.argmax(-1)
correct_phones += (pred_phone[alignment] == y_phone).sum().item()
for p, t in zip(pred_phone[alignment].tolist(), y_phone.tolist()):
phoneme_confusion[p, t] += 1
else:
assert y.size(0) == pred.size(0)
dists = F.pairwise_distance(y, pred)
assert len(pred_phone.size()) == 2 and len(y_phone.size()) == 1
phoneme_loss = F.cross_entropy(pred_phone, y_phone, reduction='sum')
loss = dists.sum() + FLAGS.phoneme_loss_weight * phoneme_loss
if phoneme_eval:
pred_phone = pred_phone.argmax(-1)
correct_phones += (pred_phone == y_phone).sum().item()
for p, t in zip(pred_phone.tolist(), y_phone.tolist()):
phoneme_confusion[p, t] += 1
losses.append(loss)
total_length += y.size(0)
return sum(losses)/total_length, correct_phones/total_length
def train_model(trainset, devset, device, save_sound_outputs=True):
n_epochs = FLAGS.epochs
if FLAGS.data_size_fraction >= 1:
training_subset = trainset
else:
training_subset = trainset.subset(FLAGS.data_size_fraction)
dataloader = torch.utils.data.DataLoader(training_subset, pin_memory=(device=='cuda'), collate_fn=devset.collate_raw, num_workers=0, batch_sampler=SizeAwareSampler(training_subset, 256000))
n_phones = len(phoneme_inventory)
model = Model(devset.num_features, devset.num_speech_features, n_phones).to(device)
if FLAGS.start_training_from is not None:
state_dict = torch.load(FLAGS.start_training_from)
model.load_state_dict(state_dict, strict=False)
if save_sound_outputs:
vocoder = Vocoder()
optim = torch.optim.AdamW(model.parameters(), weight_decay=FLAGS.l2)
lr_sched = torch.optim.lr_scheduler.ReduceLROnPlateau(optim, 'min', 0.5, patience=FLAGS.learning_rate_patience)
def set_lr(new_lr):
for param_group in optim.param_groups:
param_group['lr'] = new_lr
target_lr = FLAGS.learning_rate
def schedule_lr(iteration):
iteration = iteration + 1
if iteration <= FLAGS.learning_rate_warmup:
set_lr(iteration*target_lr/FLAGS.learning_rate_warmup)
seq_len = 200
batch_idx = 0
for epoch_idx in range(n_epochs):
losses = []
for batch in tqdm.tqdm(dataloader, 'Train step', disable=None):
optim.zero_grad()
schedule_lr(batch_idx)
X = combine_fixed_length([t.to(device, non_blocking=True) for t in batch['emg']], seq_len)
X_raw = combine_fixed_length([t.to(device, non_blocking=True) for t in batch['raw_emg']], seq_len*8)
sess = combine_fixed_length([t.to(device, non_blocking=True) for t in batch['session_ids']], seq_len)
pred, phoneme_pred = model(X, X_raw, sess)
loss, _ = dtw_loss(pred, phoneme_pred, batch)
losses.append(loss.item())
loss.backward()
optim.step()
batch_idx += 1
train_loss = np.mean(losses)
val, phoneme_acc, _ = test(model, devset, device)
lr_sched.step(val)
logging.info(f'finished epoch {epoch_idx+1} - validation loss: {val:.4f} training loss: {train_loss:.4f} phoneme accuracy: {phoneme_acc*100:.2f}')
torch.save(model.state_dict(), os.path.join(FLAGS.output_directory,'model.pt'))
if save_sound_outputs:
save_output(model, devset[0], os.path.join(FLAGS.output_directory, f'epoch_{epoch_idx}_output.wav'), device, devset.mfcc_norm, vocoder)
if save_sound_outputs:
for i, datapoint in enumerate(devset):
save_output(model, datapoint, os.path.join(FLAGS.output_directory, f'example_output_{i}.wav'), device, devset.mfcc_norm, vocoder)
evaluate(devset, FLAGS.output_directory)
return model
def main():
os.makedirs(FLAGS.output_directory, exist_ok=True)
logging.basicConfig(handlers=[
logging.FileHandler(os.path.join(FLAGS.output_directory, 'log.txt'), 'w'),
logging.StreamHandler()
], level=logging.INFO, format="%(message)s")
logging.info(subprocess.run(['git','rev-parse','HEAD'], stdout=subprocess.PIPE, universal_newlines=True).stdout)
logging.info(subprocess.run(['git','diff'], stdout=subprocess.PIPE, universal_newlines=True).stdout)
logging.info(sys.argv)
trainset = EMGDataset(dev=False,test=False)
devset = EMGDataset(dev=True)
logging.info('output example: %s', devset.example_indices[0])
logging.info('train / dev split: %d %d',len(trainset),len(devset))
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = train_model(trainset, devset, device, save_sound_outputs=(FLAGS.hifigan_checkpoint is not None))
if __name__ == '__main__':
FLAGS(sys.argv)
main()