-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathgolden-age-tv.Rmd
201 lines (161 loc) · 4.96 KB
/
golden-age-tv.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
title: "Untitled"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
library(tidyverse)
theme_set(theme_light())
tv_ratings <- read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-01-08/IMDb_Economist_tv_ratings.csv")
```
```{r}
tv_ratings %>%
filter(title == "Buffy the Vampire Slayer")
```
## Do most shows get better or worse over time?
```{r}
tv_ratings %>%
count(seasonNumber) %>%
ggplot(aes(seasonNumber, n)) +
geom_line()
tv_ratings %>%
filter(seasonNumber <= 7) %>%
group_by(seasonNumber) %>%
summarize(av_rating = mean(av_rating)) %>%
ggplot(aes(seasonNumber, av_rating)) +
geom_line()
tv_ratings_full_show <- tv_ratings %>%
group_by(title) %>%
filter(1 %in% seasonNumber,
all(seasonNumber == dplyr::row_number()))
tv_ratings_full_show %>%
filter(n() >= 5) %>%
filter(seasonNumber <= 5) %>%
group_by(seasonNumber) %>%
ggplot(aes(factor(seasonNumber), av_rating)) +
geom_boxplot()
```
What are the highest rated seasons of TV?
```{r}
by_show <- tv_ratings %>%
group_by(title) %>%
summarize(avg_rating = mean(av_rating),
sd = sd(av_rating),
seasons = n()) %>%
arrange(desc(avg_rating))
most_variable_shows <- by_show %>%
filter(seasons >= 5) %>%
top_n(6, sd)
tv_ratings %>%
inner_join(most_variable_shows, by = "title") %>%
ggplot(aes(seasonNumber, av_rating, color = title)) +
geom_line() +
geom_point() +
scale_x_continuous(breaks = function(lim) seq(floor(lim[1]), ceiling(lim[2]), 2)) +
facet_wrap(~ title) +
theme(legend.position = "none")
```
### Has TV been getting better or worse over time?
```{r}
library(lubridate)
tv_ratings %>%
mutate(year = year(date)) %>%
ggplot(aes(av_rating)) +
geom_histogram() +
facet_wrap(~ year)
by_year <- tv_ratings %>%
group_by(year = 2 * (year(date) %/% 2)) %>%
summarize(mean_rating = mean(av_rating),
median_rating = median(av_rating),
mean_season_1 = mean(av_rating[seasonNumber == 1]),
avg_season = mean(seasonNumber),
sd = sd(av_rating),
observations = n())
by_year %>%
gather(metric, value, -year, -observations, -avg_season, -sd) %>%
ggplot(aes(year, value, color = metric)) +
geom_line() +
geom_point()
tv_ratings %>%
group_by(year = 5 * (year(date) %/% 5),
seasonNumber = ifelse(seasonNumber >= 4, "4+", seasonNumber)) %>%
summarize(mean_rating = mean(av_rating),
observations = n()) %>%
ggplot(aes(year, mean_rating, color = seasonNumber)) +
geom_line() +
labs(color = "Season",
y = "Average rating in each 5 year period")
tv_ratings %>%
ggplot(aes(date, av_rating)) +
geom_point() +
geom_smooth(method = "loess")
tv_ratings %>%
mutate(year = 2 * (year(date) %/% 2)) %>%
ggplot(aes(year, av_rating, group = year)) +
geom_boxplot()
tv_ratings %>%
filter(seasonNumber == 1) %>%
mutate(year = 2 * (year(date) %/% 2)) %>%
ggplot(aes(year, av_rating, group = year)) +
geom_boxplot()
```
### Show survival
If season 1 is good, what's the probability they get a season 2?
```{r}
first_three_seasons <- tv_ratings %>%
filter(seasonNumber <= 3) %>%
group_by(title) %>%
mutate(date_first_season = min(date)) %>%
ungroup() %>%
transmute(titleId,
title,
date_first_season,
seasonNumber = paste0("season", seasonNumber),
av_rating) %>%
distinct(title, seasonNumber, .keep_all = TRUE) %>%
spread(seasonNumber, av_rating) %>%
filter(!is.na(season1)) %>%
filter(date_first_season <= "2017-01-01")
library(broom)
glm(!is.na(season2) ~ season1, data = first_three_seasons) %>%
summary()
```
```{r}
first_three_seasons %>%
group_by(season1_bin = cut(season1, c(0, 7, 7.5, 8, 8.5, 10)),
time_bin = ifelse(date_first_season < "2000-01-01", "Before 2000", "After 2000")) %>%
summarize(had_second_season = mean(!is.na(season2)),
observations = n()) %>%
ggplot(aes(season1_bin,
had_second_season,
color = time_bin,
group = time_bin)) +
geom_line() +
geom_point() +
scale_y_continuous(labels = scales::percent_format())
```
```{r}
library(broom)
new_data <- crossing(
year = 1990:2018,
season1 = seq(6, 9)
)
library(splines)
mod <- first_three_seasons %>%
mutate(year = year(date_first_season),
had_second_season = !is.na(season2)) %>%
glm(had_second_season ~ season1 * year, data = ., family = "binomial")
summary(mod)
mod %>%
augment(newdata = new_data, type.predict = "response") %>%
ggplot(aes(year, .fitted, color = factor(season1))) +
geom_line() +
scale_y_continuous(labels = scales::percent_format()) +
labs(title = "Probability of getting season 2 has become more dependent on ratings of season 1",
color = "Season 1 rating",
x = "Year show premiered",
y = "Predicted probability of getting season 2")
```
Whether a show gets a second season depends on the ratings of the first season