-
Notifications
You must be signed in to change notification settings - Fork 0
/
script.py
456 lines (375 loc) · 15.9 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import argparse
import math
from pathlib import Path
import io
import sys
sys.path.append('./taming-transformers')
from base64 import b64encode
from omegaconf import OmegaConf
from PIL import Image
from taming.models import cond_transformer, vqgan
import torch
from torch import nn, optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm import tqdm
import clip
import kornia.augmentation as K
import numpy as np
import imageio
from PIL import ImageFile, Image
from imgtag import ImgTag # metadata
from libxmp import * # metadata
import libxmp # metadata
from stegano import lsb
import json
ImageFile.LOAD_TRUNCATED_IMAGES = True
sys.path.append('./CLIP')
# sys.path.append('./guided-diffusion')
import clip
# from guided_diffusion.script_util import create_model_and_diffusion, model_and_diffusion_defaults
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
class ClampWithGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
@staticmethod
def backward(ctx, grad_in):
input, = ctx.saved_tensors
return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
clamp_with_grad = ClampWithGrad.apply
def vector_quantize(x, codebook):
d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T
indices = d.argmin(-1)
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook
return replace_grad(x_q, x)
class Prompt(nn.Module):
def __init__(self, embed, weight=1., stop=float('-inf')):
super().__init__()
self.register_buffer('embed', embed)
self.register_buffer('weight', torch.as_tensor(weight))
self.register_buffer('stop', torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
def parse_prompt(prompt):
vals = prompt.rsplit(':', 2)
vals = vals + ['', '1', '-inf'][len(vals):]
return vals[0], float(vals[1]), float(vals[2])
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
# K.RandomSolarize(0.01, 0.01, p=0.7),
K.RandomSharpness(0.3,p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
K.RandomPerspective(0.2,p=0.4),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7))
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def load_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
if config.model.target == 'taming.models.vqgan.VQModel':
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
parent_model.eval().requires_grad_(False)
parent_model.init_from_ckpt(checkpoint_path)
model = parent_model.first_stage_model
else:
raise ValueError(f'unknown model type: {config.model.target}')
del model.loss
return model
def resize_image(image, out_size):
ratio = image.size[0] / image.size[1]
area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
size = round((area * ratio)**0.5), round((area / ratio)**0.5)
return image.resize(size, Image.LANCZOS)
# Define necessary functions for CLIP guided diffusion
def fetch(url_or_path):
if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
r = requests.get(url_or_path)
r.raise_for_status()
fd = io.BytesIO()
fd.write(r.content)
fd.seek(0)
return fd
return open(url_or_path, 'rb')
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
return torch.cat(cutouts)
def spherical_dist_loss(x, y):
x = F.normalize(x, dim=-1)
y = F.normalize(y, dim=-1)
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
def tv_loss(input):
"""L2 total variation loss, as in Mahendran et al."""
input = F.pad(input, (0, 1, 0, 1), 'replicate')
x_diff = input[..., :-1, 1:] - input[..., :-1, :-1]
y_diff = input[..., 1:, :-1] - input[..., :-1, :-1]
return (x_diff**2 + y_diff**2).mean([1, 2, 3])
#@markdown ### Set Global Parameters
# os.chdir(abs_root_path)
seed = -1#@param {type:"number"}
display_frequency = 50#@param {type:"number"}
usingDiffusion = False;
#@markdown #**VQGAN+CLIP**
prompts = "A woman looking through a window onto a hectic scene" #@param {type:"string"}
width = 512#@param {type:"number"}
height = 512#@param {type:"number"}
#@markdown Note: x4 and x16 models for CLIP may not work reliably on lower-memory machines
clip_model = "ViT-B/32" #@param ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'ViT-B/32','ViT-B/16']
vqgan_model = "wikiart_16384" #@param ["vqgan_imagenet_f16_16384", "vqgan_imagenet_f16_1024", "wikiart_16384", "coco", "sflckr"]
initial_image = ""#@param {type:"string"}
target_images = ""#@param {type:"string"}
max_iterations = 10000#@param {type:"number"}
input_images = ""
#@markdown ### Advanced VQGAN+CLIP Parameters
vq_init_weight = 0.0#@param {type:"number"}
vq_step_size = 0.1#@param {type:"number"}
vq_cutn = 64#@param {type:"number"}
vq_cutpow = 1.0#@param {type:"number"}
model_names={"vqgan_imagenet_f16_16384": 'ImageNet 16384',"vqgan_imagenet_f16_1024":"ImageNet 1024",
"wikiart_1024":"WikiArt 1024", "wikiart_16384":"WikiArt 16384", "coco":"COCO-Stuff", "faceshq":"FacesHQ", "sflckr":"S-FLCKR"}
model_name = model_names[vqgan_model]
torch.cuda.empty_cache()
with torch.no_grad():
torch.cuda.empty_cache()
if seed == -1:
seed = None
if initial_image == "None":
initial_image = None
if target_images == "None" or not target_images:
target_images = []
else:
target_images = target_images.split("|")
target_images = [image.strip() for image in target_images]
if initial_image or target_images != []:
input_images = True
prompts = [frase.strip() for frase in prompts.split("|")]
if prompts == ['']:
prompts = []
args = argparse.Namespace(
prompts=prompts,
image_prompts=target_images,
noise_prompt_seeds=[],
noise_prompt_weights=[],
size=[width, height],
init_image=initial_image,
init_weight=0.,
clip_model= clip_model,
vqgan_config=f'models/{vqgan_model}.yaml',
vqgan_checkpoint=f'models/{vqgan_model}.ckpt',
step_size=vq_step_size,
cutn=vq_cutn,
cut_pow=vq_cutpow,
display_freq=display_frequency,
seed=seed,
)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
notebook_name = "VQGAN+CLIP"
print('Executing using VQGAN+CLIP method')
print('Using device:', device)
if prompts:
print('Using text prompt:', prompts)
if target_images:
print('Using image prompts:', target_images)
if args.seed is None:
seed = torch.seed()
else:
seed = args.seed
torch.manual_seed(seed)
print('Using seed:', seed)
model = load_vqgan_model(args.vqgan_config, args.vqgan_checkpoint).to(device)
perceptor = clip.load(args.clip_model, jit=False)[0].eval().requires_grad_(False).to(device)
cut_size = perceptor.visual.input_resolution
e_dim = model.quantize.e_dim
f = 2**(model.decoder.num_resolutions - 1)
make_cutouts = MakeCutouts(cut_size, args.cutn, cut_pow=args.cut_pow)
n_toks = model.quantize.n_e
toksX, toksY = args.size[0] // f, args.size[1] // f
sideX, sideY = toksX * f, toksY * f
z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None]
z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None]
if args.init_image:
pil_image = Image.open(args.init_image).convert('RGB')
pil_image = pil_image.resize((sideX, sideY), Image.LANCZOS)
z, *_ = model.encode(TF.to_tensor(pil_image).to(device).unsqueeze(0) * 2 - 1)
else:
one_hot = F.one_hot(torch.randint(n_toks, [toksY * toksX], device=device), n_toks).float()
z = one_hot @ model.quantize.embedding.weight
z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2)
z_orig = z.clone()
z.requires_grad_(True)
opt = optim.Adam([z], lr=args.step_size)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
pMs = []
for prompt in args.prompts:
txt, weight, stop = parse_prompt(prompt)
embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
for prompt in args.image_prompts:
path, weight, stop = parse_prompt(prompt)
img = resize_image(Image.open(path).convert('RGB'), (sideX, sideY))
batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device))
embed = perceptor.encode_image(normalize(batch)).float()
pMs.append(Prompt(embed, weight, stop).to(device))
for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights):
gen = torch.Generator().manual_seed(seed)
embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen)
pMs.append(Prompt(embed, weight).to(device))
def synth(z):
z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim(3, 1)
return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1)
def add_xmp_data(nombrefichero):
image = ImgTag(filename=nombrefichero)
image.xmp.append_array_item(libxmp.consts.XMP_NS_DC, 'creator', 'VQGAN+CLIP', {"prop_array_is_ordered":True, "prop_value_is_array":True})
if args.prompts:
image.xmp.append_array_item(libxmp.consts.XMP_NS_DC, 'title', " | ".join(args.prompts), {"prop_array_is_ordered":True, "prop_value_is_array":True})
else:
image.xmp.append_array_item(libxmp.consts.XMP_NS_DC, 'title', 'None', {"prop_array_is_ordered":True, "prop_value_is_array":True})
image.xmp.append_array_item(libxmp.consts.XMP_NS_DC, 'i', str(i), {"prop_array_is_ordered":True, "prop_value_is_array":True})
image.xmp.append_array_item(libxmp.consts.XMP_NS_DC, 'model', model_name, {"prop_array_is_ordered":True, "prop_value_is_array":True})
image.xmp.append_array_item(libxmp.consts.XMP_NS_DC, 'seed',str(seed) , {"prop_array_is_ordered":True, "prop_value_is_array":True})
image.xmp.append_array_item(libxmp.consts.XMP_NS_DC, 'input_images',str(input_images) , {"prop_array_is_ordered":True, "prop_value_is_array":True})
#for frases in args.prompts:
# image.xmp.append_array_item(libxmp.consts.XMP_NS_DC, 'Prompt' ,frases, {"prop_array_is_ordered":True, "prop_value_is_array":True})
image.close()
def add_stegano_data(filename):
data = {
"title": " | ".join(args.prompts) if args.prompts else None,
"notebook": notebook_name,
"i": i,
"model": model_name,
"seed": str(seed),
"input_images": input_images
}
lsb.hide(filename, json.dumps(data)).save(filename)
@torch.no_grad()
def checkin(i, losses):
losses_str = ', '.join(f'{loss.item():g}' for loss in losses)
tqdm.write(f'i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}')
out = synth(z)
TF.to_pil_image(out[0].cpu()).save('progress.png')
add_stegano_data('progress.png')
add_xmp_data('progress.png')
display.display(display.Image('progress.png'))
def ascend_txt():
global i
out = synth(z)
iii = perceptor.encode_image(normalize(make_cutouts(out))).float()
result = []
if args.init_weight:
result.append(F.mse_loss(z, z_orig) * args.init_weight / 2)
for prompt in pMs:
result.append(prompt(iii))
img = np.array(out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8))[:,:,:]
img = np.transpose(img, (1, 2, 0))
filename = f"vqgan-steps/{i:04}.png"
imageio.imwrite(filename, np.array(img))
add_stegano_data(filename)
add_xmp_data(filename)
return result
def train(i):
opt.zero_grad()
lossAll = ascend_txt()
if i % args.display_freq == 0:
checkin(i, lossAll)
loss = sum(lossAll)
loss.backward()
opt.step()
with torch.no_grad():
z.copy_(z.maximum(z_min).minimum(z_max))
i = 0
try:
with tqdm() as pbar:
while True:
train(i)
if i == max_iterations:
break
i += 1
pbar.update()
except KeyboardInterrupt:
pass