-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGraficos.nb
11964 lines (11749 loc) · 625 KB
/
Graficos.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 628079, 11955]
NotebookOptionsPosition[ 619748, 11691]
NotebookOutlinePosition[ 620197, 11708]
CellTagsIndexPosition[ 620154, 11705]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Fun\[CCedilla]\[ATilde]o Gama:", "Title",
CellChangeTimes->{{3.70160374590707*^9, 3.701603753831884*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Gamma", "[",
RowBox[{"x", "+", "1"}], "]"}], ",",
RowBox[{"\[ExponentialE]", "^",
RowBox[{"(",
RowBox[{"x", "+", "1"}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",", "Dashed"}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.701532346566533*^9, 3.7015323627554593`*^9}, {
3.70153243899282*^9, 3.701532466076369*^9}, {3.7023374940376873`*^9,
3.7023375154138403`*^9}, {3.7046220587584553`*^9, 3.7046220633107157`*^9}, {
3.704622155044963*^9, 3.704622158509161*^9}, {3.70462246252855*^9,
3.7046224757103043`*^9}, {3.704623039511552*^9, 3.7046230407016196`*^9}, {
3.7046231827447443`*^9, 3.7046232051710267`*^9}, {3.7046232939331036`*^9,
3.704623295249179*^9}, {3.7046235676357584`*^9, 3.7046235681647887`*^9}, {
3.704703953024906*^9, 3.7047039551621094`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3c81e8XwK+997o2EYkyUoR6DqLIiFBmdkZGVGayV0YyK7u+DREZGZWt
EDLK3jvdi2tn/u7vn8/n9X6d13Ne5znzOcK2HoYOpBgMRoL4+f8/K8iWUtb+
8cXHPQ31R0crKNsMp3RDyBmJ9lzPfEpYQUO6sV5CQn7odd1rCZ2ZFeRz2ZSR
QigGhaWtM8l9X0GazWCxLfgMTQi2qtc/WUFFofJhq4LvkM7hU4eXJ1dQLeUA
/8rHAsRlWjkRKLCCumP9qvDqhUiD866ZL+sKWntai1+6XYys79Nq/tpdRpkG
ooVrA6VovHWsD9u5jKZsPnDiBatRDsOzW9k+y2jp5ZEdbrEalWkpKfi7LaO1
uWsf/36sQSZWvRfu2S0jcpf1q0vqX5BCu89Bg/4yEvNSDFm4XYfy2q5410os
o3OqU5urA42ouyXvC+MMHilNx2R6qjShd9/tLlUM49HFMDn11dwmxPKzYORB
Lx5dbgl7suLcjN5nt0doN+LRTS0xyeW9FvRlb4xE+iUeBRi4Wv8VbEOYUw/5
Wp3x6DDsHPdEXBvScjbqDLDFo+BPJL29/9rQj/ISDR1zPArnzVCv6WtHXZ/I
e9V08ShhrlksJqoDLTiVW4XI4REz9slE4EYHMrUa1uGUwqOn2uYZnjad6Plt
rcxvx/EovZhAc1O5C3mJrn3y5cajXD8BvNjKT1Sf2GMjQIpHLP0bhgynu9HV
r/mjMfs4ZOhhJh1l340a5isfMG3j0O+844v+Pd0Ih8u764TDoWHKL6a273vQ
o/2tQN1BHOLNFT43OtWDpE50LUb04ZDF+ShWE2wvSoREw4EuHBp3NfyhFdGL
WqlFM5pbcGime1FF9lYfekAQ0m8pxyFRFz3u96l9aC8yjraxBIccyco3RTv6
UGEoV31/IQ4tnn30AXv+F5qr6sm5/B8O4Z5zCGHYfiOS4ncb6uk4dEo+YN9P
6zfSd8fBQTIOuXdODq4/+o0smU2zO5/gEOHofdIC7je6P/1SsCwWh7bs1ch+
futHbCSPjRMe4ZDC4ZuJKwf9iDdlU/UgEId80xm+NJ4ZQIsHpB6h/ji01zZ4
71PuAArQeCzx8z4OqdhdNJAZGEC8x0Sj0rxxKGj/5akChkHEvvCsxfsuDmGk
Peaz/AfRpD9NjIcbDqm2/mrk+jiIqFg6JuNdcSjURiknaWEQFevv1TY44xB5
CsXNCKMhlBlSU+nsiEMap1zlj2KH0AJ33psxexyK/NbN7NcwhGYIOa2OdjhE
8+9F253Twygcu321yhqHFKOG/LVthlE/y9uYlFs45MTBJXUiZRhx7V7YD7XC
ofSXRmMU34dRavZycpglDn2TfZow828YxTueUE2zIPqj7idqkBpBl9uSNmrM
cei4HgMh+9YIOvaNOodghkNGo9r5gU9H0GOrfFklIoe7RF83axlBsywFWSmm
OFS+00KuuDOCzpvn/cIQeSaS7BOH5Cjqk0GtQTdxiJVD9fa65SjKj/BwYSSy
2ssgbM+TUXSrw7Co+AYOecl+afvQNIqCAy+E2RI5r+6ff9zWKBrLqBwXI3K3
roKUi8QYolcMLN03Ifp39N7YZYsx5MXoR5ghsoxLacLxxDFE+NeZMErkWzsr
iKxxDKkmdjycJ3JC5CnC5MYYmnm7/ZGEqK+W3TW/Vnwc5W+TCp4mMj7/7fVM
s3FUntJb5UpkPtl5cv/4cWSY6u9dQ2SdOpFPN+rH0ULORXUeov0Buja3z66P
o5LQJL7HRC4YycayiU2g8R/sG/TE+w87j7at3pxAJ+wyanOITLPDHdD1eAJ1
ivLcVSf6TzHyhlRh7QQiDWrB7BDZiT11LIYwgb7Srtt+Jfpfx8D5+xnWSYSX
PxGfTIxPwMRrXxaNSVTbl8nsRYzn09caBsFWkyims8nYnxjvArdZiRWfSdTx
qV4pmZgPw3vCIx0Fk+hFy/zXLVscWmusL1NunkShjvpaqsR8oom9FVcwNokc
Eb1+pgPRHmzWhWjmKXR7oPO/MCccujahzLktMYX+ityaY3Ih2vd6eNlBfQrF
C1gGFhLzN10em6v+YArlKz5I5PQg5s+1ZNKjkSkkllTsUvQAhxixciNum1Mo
yo8v4rMvDolNdJeNMk6jLO1XVUPEejJ2Y3SoUZ1GBuLVeprE+iuPifl+/800
wt7m8puIxqGOaydyZ+un0XKiR5bbY2I+cX33vT48jWIHmF/TJRDz6TX5SVmG
GeQ45afjQ6z3u42P4nBeM6jpT4k+fQ4O7bCkFI08nkHsPGeCafKJ9Wnztqv9
1QxSD5zv4CD2jzhMD/O7/hk0wZv11vw9Dr29eCzVQWkWfTlSWH1RhUOTNc1Z
4yRz6IWdsfnf3zh0m3aotpNnDt0QOO8yOIRDy6b4iS9n5hCd5D/TX2M4tL/D
ceyFwxw6wabSszOHQ1iF269vtM2hKEqlofUtoj/LaIq7n8wT+3vQwxJePBog
FeiuezePMrEyibFCeGRlKEf40DiPlDAHtt7Efn2HYHYmfmMeHbbP6dyVxqNo
6cJKrZsLSNM6iU3gEh7VvderbxRcRNT5tgzKnnh0+lVyT/mHPyidNW84vA+P
2DNktuvb/qDfmOecbcT5tPe4k69z9g+iIR1pFJjGo1ZvKqc5niX0Irj9weEq
HtmqBxxyRC0hn33XrESmZZQ6bSvpc+sv4u159nuPOA/3heQizjMT51iRagf3
+DKaZv9ZoCGJR/r3rwYnLyyjNuo73QaaeEQjHSAvSFhGaav/8boE4pGF+9nK
O+QrSKaeu/T5InHuCC1PTUquILtbJBN79cRzIhh6+aAVNKfnxDehuIrE+tSG
rLCriP3bHdEgjVVEUL4pOM6/itQu3JXiN1xFjYapHxxEVlGupL+Kuesqesqy
VxV/ehVZUMdZDGStoh/nmdZVied6G4ozf5ISUIiqb+fFe6uoVn6br76DgBjD
V5YKBlcR/v2e6K0hAjLg7BBUmVhFfCKYU4dzBOTxKedc/9wq8mOhuaByREBm
lfJCx9dXkfwyj2WV7BpKEOp6dJqRgAreXMwqSVtDN8R3AjY0CCidJ5I/z3od
BfxXLOj7hYC2Zrre6LmvI23pWvqBZgIyKuKS2w9YRyXfMYaqnQTECu80b6Sv
o+7cfGrFcQKKc+jwYOhaR+GVoceKMWsouIS10U95A+WunxfuuLyGnDRzHA05
N1GlU0MSxcQa+sa0uHoksomSq7x3phbX0PEhmYAi2U209JR0o31tDU27NiZS
624ijbq/vxsp15FF0lxVbdgmOgpzCboqvY6ujUrSSRI20egCk2t76Do671VV
TNaxhSrb+yd7z2yg7iNlq7tDW0j+n3fzMbSBHOPr6Cfmt5BEKi8Ea2+gp2+/
OdeQbKPSj3Fy9jYbaGn8l8hdhW0khUFuPYkbKPMqIX08fxtNi4g166xsoEPR
k8HVfjsIwwj24tWbKKW06LR41A7KMh3zvvRtE50E2bGUlB20FlI55Nm3iUzM
FZU8i3fQqds2c9v4TVScpLkhNreDpI9xfKgX2ULWh7ZOKdf+oSHH2GHtp1uo
aeDFNQ/xXXS+R4WkImAbpdgab2ye2UXGur64/pht5IhnzAiEXVQuqnxElbGN
aMlCJ2JMd1HgQWJ/evk2unbayf3V413EIq+y4rG8jcbD5eOGVnZRy9cJASaH
HbQr2/ldvWoPDTKKXPa1+oc6vkS6tjfvIX1DVa0s938o+zIwGfTsIV1mvFdf
0D+kallmYrW0h4QCPEK9c/6h6Ohnc758+8i8MP5h+NQ/xDnhQPYheB9NTabF
/HPaRbJxhxexWgfou7rS/MeIPSTnvG9fZHKAtt9p0394tofkNXdj1ewP0C3+
VeGGoj10DrPVf+fRAaIkGQmT6t9DKvfw7g0VB8j0lygJ74l9dMViNNvl2CH6
2Clzzb17H1lL1Rx+2TtEsQ1c9h/PHCJbmipRQ5oj9OBHW2S99iGym6/QXuA8
Qm83vAWXbA6RY+7HNBa5I3STdvBU/JNDdIf93WlHpyM0rnxSjHPlkNgn0q2Y
fh8ho4tzV/U/HqHL80oTMjcwcJS0O5L/HwYc+37hoiwxcAxGXRlLMRBe7747
bocBsskXRlG1GGh4ns8R74mBwHK6O3kDGFDWp9X5E4OBpipZE19aEpCuGqrK
+4KBcZcpr1ovEuCK9X3KeowEPgiu1vDokcI5H9Zc5xMkwN5mkqZvQQpG9oVF
9adJ4MpX8R/JLqSQdHGy1V2ZBP6kpUZqR5EC3frlo3YjEuhVNpfxbiCFI3Ou
O2FRJFDilLtdr0gGC6c+aWzgSKBcktu6+ww5HHvo5iC5TgLWeZ1VDerkYNEh
GmH7jwRKjzZYm6+TQ7dLcnM3BSk8n7qL3fcmh5o3nupFAqSge1ozSrmCHOKE
JVUdr5GC4j2JizTKFCDLkasyWEYK+n/mUzyMKOGO/Q0LphpSkJwSlnrrSAmv
yxgDNetJQbtuzHzDlxJ4DB9+Lu8ghXrLr+PfsyiBPNFMKWmOFP72vMBbLlJC
PzWHojYXGai/GXIxC6GCgP2YM1/8yaD15cUxlSZq6Lpnl+IfQgbX6vL2Roeo
QQivsqkYTQau4St16avU0Dy28qkilQwE0kfrLQVogL7OWKm4hAwKSSUspANo
IDtEWDV/ngwMzNOMqZRooYGyWi/akBx8g1P0ozrpgP3R02JNU3KYuTyxVL9A
B47brswU1uSwTK1Yy01KD7SLAr0hbuTAI3ZQKKFAD4Zt4cYB0eRwf9CN83s+
Pcw+vmbhXksO1nwcMnzBDEDFsuhsdJICRARptS2MmGArykIjR4YCTspRLDd5
MsH8YbfQ0jkKEEha8b0azwTfcNUDj9QpQCiXcbzmGxNEtj7WeG9BAcEK/1IS
+ZmBMlhamDSRAnR4C7SZU4m88mCweJ0CQsqOUbMnscCWw9+y3X8UsHStKd8t
jwXmR28lamAoYVcmoXPoIwt8a7+iOUJPCQm9z04v9bJA5GueckoxSlDZGMvD
c7ACpVVtouVNSqipP9aRnMMKFJ0Ul+m+EuN6+80rqkY2oHfLtBtrooS6Gvpe
n342YGc4E1zcTgniPPkeJH/ZQFTXuvr6ICU8YWYPt2Fnh0udNZKZ65QwETo7
dNOJHUI7PZhPnaSCotBxPnUODsB0DQ3ppVPBQvRSL1U4J1C7e24JZVNBxb33
1LgXnMDMSMW2/ooK0mI6biyXcYKQnrxOeikVELwn53RnOQF1JdROdFLB8Tz5
Kw81uSCoS/2lJzk1uHw5K9rIjIW9rqI7T+9Sw/VPzILctdwg0GPz4pIvNbzz
rGBKGuIGtT6O9q0galiEODvJTW6IHXgobh5HDRz3g5e/S/EAdlJ3WuQNNbRv
7Zf9l8UD5wj4GxWj1PCWl43AH8kLnmyn1Qcv04BqSfuNW978kMIxfTdWjwZc
svmaQpP5oZIrLVfFmAao5yjmu8r44ZD38CDXlgZMfGZkpjf4IV60q8r5IQ18
YbbC7PkKQMFZ99N7pTSQcvFmg3iMIMzd+MAtIEALqdKpadFzQvD65kGjhSgt
ZD6w2sVuC4GTqc6dFydpYey4iWUttTAsmS3VYhVoQcHlZ9wVKWFYtRSzZ7tG
C6xWG/GW94Rh3y77A3UoLYwUVt/Lpz4GbJ4J6utztGD4H2+RrZoI/PIcw8ni
aMFswZe73UQE0u5KpXmu0UK9Gr+0tqsIYL3bF/GHtCD642p/SooICDygTFjk
ogPjs+bZNxZF4GRg0OCYFh10R8T+K04RBdVod7fWImJd4Y7HZJKIAU/pxI2E
cjrwOozgsOIVg42Ra2pGn+lgdGCiRfWsGLyWPsM12UrUF1Vo5OksBvQD2/Xb
M3QwYTEW49EnBv3HQ9jFeejBv49T9dgHcXBtSv4cEUkPEQ9oLrQ+koBLePLX
V+PpIVc9YkM2WwIEuB48YUmhh+OtFPebv0gQ+9tNh6w8ekj9Zv7ZflcCzrHy
M1V8oQdx/ebBDJ+TgLF5bTu7Rg8tlFXm5P6SkHpYRaN+iwGyfitQvMo9BfTi
Le6pDgww+8NvV6HxFITr9/QtuDKA7LjA3a2ZU+CV+ycrzpcBbOszW9fFT4Oe
Go9cfxIDDNe8D9z6eBooIwPMnJsZYFkVs6zfJQ2+DBffJ0owQol2+FlSDllY
OavNPC3NCJ98zokUn5AFRyuT+/LnGGH71T2V+yqyYFTsjobUGCH9OnmArr0s
yBrk9B2zYAQSBv1N2QpZWErB7FckMMLivb9Lf8zlwJyvSWd0nRHaxPM3sbVn
YMmNsFaxywjt51JlhAfOgG+d4LNEEiY4M7sTqLN6BtJsA+fUmJiAre4uL4OI
PPS+PRv07iQT0Ea1KanEyoP22bfFD2yYgE6j1Tvk1llQ0otnZfnJBA5ZX9TO
iitAW87nqqXfTOC87+RKp6EANwl/rJpHmUDwLd0AnZ0C3E/RfO+zxAQCRWP3
43KIcvyR8AopM5gS7own8yhCypnqGmMBZohio2LbxJ4H+npJ3DFjZuC8+Ltl
VlEZpp8ZtD66yQzG/OHTE+bKUOnt82rUnBkqIjkk6R8pg614k0WaLVHfOUeH
fy1EeYJZJ40nM3DopGefNlEBW8uYD6uxzBCZcv2lZvAFqNqd96ytZ4YmOkYK
swMECb/odXmbmUGZ0rM3mg3A7oOchO93ZnguV6sWegKA0TZoSraLGZzvrX7q
MiTK2zgM/xthhv3XM2O9b4nyjEtn4raY4bPNl+QSM1VwOJu/aSrFAi6dbI7s
A2oQm8DB9FCaBXzlDHCGy2rwYSH6RK4cC9w+fiOhhEIdtp55mM8rsoA8ZuV3
m7w6RB+qNHhpsEC+w56hX4o6FHwfiHtsxQLZ3imj66aXYNmUQfTrExY4/jqb
/9WhBrCWBV+YTGYBzZ/2fkI8mnCOfsOELJ0FBLY0txrOasKj2uEYrSwWSFA2
FL/vpgnMIm9Xfr9jAQruAPX8cU2Qw6l9Xm5kAcqWbKPLrZfBJ8jXUGiTBXh5
B+N1a7TgBC6QPmqHBULSZGKej2nBoGnIN/weC7S+2SrnJdEGxbOxSp9JWeFo
zGXm8xVt2Pn74pgJMys8OrLMDRzWBn/TurXHkqzA8uePvxa1DgTJUyZv27BC
zr220sBEPTidT6tr5cAKGorxJdvVejDOxETV4sQKTDsEbOmsHqC/XAFPPVgh
EPu4al5JHzD5EnanHhK3jgB9ZLakD6FMumfsMlgBExfjN11wDSKWkvu6ulgh
KVDuYbeMIYQPzLXv9bACuLLEVV4hcrNC44nfrNAqZ6Vcb20IodkjJaEjrPD8
7mU1hSRDCDIUSTi3yApfxwy9G9YN4UFN6ZVsEjbQDjf09q67Dk6xPV/d5Nmg
8n7zie9exnDbR6TiuQIblMdgUq4kGoOj/f3C70pssNHH6L323hjsL3K/EFZl
Azevvof1c8Zgs2bt+1uXDfzUBrx0zE3AzGxV7sJtNjhMNw8w07sBOieZ3tI/
ZwMJV3F3rIkpmLZ6vJXIYoNZYdXPvj6m4OjY/VYzlw2sHZ+OUj0zheD8pHfB
r4lzeSCuuGzUFMp52N9vlLIBD9OggpajGfDRcX8Y/cEGZhtiygWh5oD7e6y8
8IANXL0y9PWmLeFfTFh5G4YdrN6X/uCktQLKE7Pl82TscI5rNoFLzgqE7P+r
EKJlh8diMopNoVZgNCpemcLJDuou9IYdYrfgS4dUTaA0Oyidu5i+o2IN8UXn
6nVs2MF7+P1q0BsbELM+YVNkT9RXSluq1mADtaw8pIzEd0FZ/4TB6REbWPU5
UP/pzg7Zluekg5hswUit+btBIDu88LGNpvK3Bb4Bg58m6exw0LF+a8/EDgox
buPWneyAxze3GMk5gEaZ1aOGbnZY2wn8/czAAcYdrgkd+8UOGlX9pUx3HYD5
xxnbmWF28E/CsSeWOMC91N05h0V2EJpI15qTdQTlk9F4FzIOuKvk2qNw8Ta0
X3+5f+88BzRP6LX8fuQMpRHTwy9UOCDdcVNN96UzPK8Urm5EHMQN7POvnW/O
4MKbe59ZkwMMUve88YwuQDOTufzekAP2Uvx8jfNc4IpX2uS0KwdkDOnvO3W7
QsuTmOZr2Rxgve1Xtm/qDoWNrfk+eRwQbZEg8SLcHVI2qEKyX3GAZlp4sW+x
O9jfjLyAK+CAY7XGnmsUHkAuFPYpqpID1uTM4v5WeIBaceDb2m4OkC3jVRBL
8oT6To84KTJOeHHg79jP5QXy7ECXTskJPBm0vflnvOCtGXMsCS0n3LBDkpn6
XpC4UBLVz8wJXZMqvzmjvcCKZC00WIATJt7hXeT3vGBf/p7fr/OcwE/47G28
5A3nM30dAz05wTmsJc9r+T4UTl+Zm/fmhC0jjwQ/5gcgJMFtb+DDCR/FapYq
5R4A9adqG7EgTlCdPecy6vMABn/uWnQ/5oTvKvSELnIfeED28LroG074+TCo
oFjCF0pdQqBjjBOyCcK2Mvn+IG9r3So2xQmc6U+SRX/4wydTdC2E+A5MLnvU
arbhD9VXDm6d+8sJrp9dthMuB0C9mN+j3B1OeDSnXnSMEACd056199i4oEb3
Fa+FwUNYNLNW4dfiAvqJduYy0WBwMUTNPjpcoGc8sVN3IRhwWgI6vfpcUEnN
82TTJBhWFEfNo0y4gPzi4/GRmGDY4rwZQLDjArJeg/RMQjCQ9enXtARxgRmW
Y0mqLQQEriJF93IuMLouPpH2PAyWG1wPEiq5oOQrT/XZyjCoU8xoLK7hgm7X
Dxcwv8LAWoygQ6jngg9flcy5GcMhn+Slzb1OLujhvfTELjwcxKsoH/vPc8HS
Lntuml8EyBzvGovEYmHTrX89IjoKMJm7+W94sVCAv9B64n0U9LCKO7UKYCFE
/3k3pisKvDDBazTHsZBZxN1twB4NFSOyVPGyWPjMR4MPfhkNSk9TZZK1sdCe
EhRt3RED6kcWYTmBWLDMe3ZYoB0HubE8f8iCsfBdaTNB1jcO9jkG9ZzCsDDJ
TQggfx0Hn6Su88jGYiFa4EVQEmk8nDDT+tiYjoWsrPhxk7p4oK84OzFXioUS
Xu0FqiuJ8MuFUVnqDxZcdDESRzpJILP1I/cJDgtXxp8csTgnQXxIDOXmChag
3VXNKCIJNDPIe79uYcGQu/KmU20SVLXsOumTc8OvHavdAbmnkCm0kOYlyA2f
d5yzhY4ng31/3VqVMTdM3cp980s2FZin2lNnbnIT95ZmalnDVPj897ciowU3
BDmitnqvVGAlwQXZ2XJD80hmdUB5KtRJYukYPbjhy6euEielNOAJ8RSxi+YG
bmjJdr2WDj2SwkYMn7mJ8+nk2LM3zyDwnNS2AnHPeOPJls788xmcUFV4btvA
DSZM5y2/bT2DIBPdycrv3CBLn/1hVfM5SIX43bH9xQ0YUVi5uvQcovt7wivx
3MDVHhARcCETLoaEVtgI8QDb2/tFw9gc2FbJtAkU4YGkbwzPOa/kQMlOBUO6
GA+0dA1tZvrkgIjnH4cO4t4i5JY6ETuQA9S3rnEqnOeB8/hx70DdXOhTEfCh
N+QBxV7DJQ1sHjjtVCtWhvEAwa9plr0zH4TL+2Z7InlgQad5t/9PPgx74J/g
YngglcXn7TfKl6C7IPRH+AkP+M4abkqrvgS5/qhncZk80E1J/kyu6iUclBnv
2lTwwHup1C7l4lfw1IPwmX6BByLW8zLSm17DAMqkdl3igTuioSr//XkNfMyX
jdvwPNCXIly3wfQG3pRkLkds8EBzM5OCueUb+EK4LHxEwgt66YyHhntvYN47
O5LAxwtq/dPCppfegZLvVYN+Q16w5WCn02IshEdXtrLkTXgh8GS+cNSFQmjG
5i09NeUFvNq7MC63QtCv3grTt+YF5TZ5P9nOQrDfzfvU6sYLrDN+iWZJRZAQ
uMP7OZoXxiJyxalPFsN08H/zObW84PfU8lHetY/woDvLs7mBF9pzf/VQ3PkI
tEJpu4vNvEBX6oVPi/oIcnWRjHI/eEE0o6cI6j5C2MHtc80DvDBo7FpcI1MK
ov4nIxdXeaHQ4YVePF8ZOHoXH5cV4YPU4mqjZe4K2G18U2wsxgfMwf6YaOUK
SGDNPe8vwQeiZedxNy0r4NPHJ7pN0nxQi2/+l5dXAVSrd+8bq/CBpJrQ1RGp
T/D2jnyLnzEfDMWcGkJ6lfDXodq+MYoPIrjMujPrqoG+XS3x5GM+UHboVTfH
VYPU6Y7qpwl8cItsgeDMXQN3tsYZ7VL5gLxvR9f/Xg3gIsmryV7ygSvpe2+f
058B90afQaOWDw6TF5JdSr/A8p+5iu8bfCBkbjFXcFgHjHoek9I7RHueq78w
5K2H06U7tBl7fLAaZAehCvXg7k9n7UTKDxSRQw/8PethmVaWloaZHyzft/wb
nK2HFclAK21JfggJeD74cqABVt1YqTpt+OEJq7XupcUmuGXwx33Pnh82mLRn
j6iboUu+vl/CiR98MVO4NYlmKNxzex3pzg+prTy/g+80g1NMmwYE8MO6QEaF
5kYzTL4KDi9L4YeaQOWMXsZv8HNkmeT5d34wqbH9+tOrFS7WtTi3tvMDF2vh
gOqLVijMz+zZ6uSHRzOzvTtNrRDrrJ13/Rc/JOjR6ilwtoHm9n/AMMUP2w/L
y8hq24jvGctHwbv80Hm1fusy7w/4oPVj3/GUAGyaF6bzMneB5HiJW4SMANBz
/6E9odoFb73Sxl+eEYCb1RHdkV5dkP/Cpn7yvAB0n5eOvdDfBan47TAzTQFo
nbp8NyfvJwQmidLp3RIAk7xWNvNX3aA99JD7bJIASAYZ3VVw74Xvbnax11ME
IDJDdPZ+XC9cItXau5suABmmZhYLBb1wUZJ97EOWADBonq21X+wF2YcFuScK
BEBo/hVrn0MfYIUHxPmaBMDXW9y+y+UXzDvJnCPbFIATIuqn53L6YYXlzWWH
HQGg/nbm6HZrP+zU8Jt+3xMA0F0xOUvoBxoGusDHpIKwEa/V+VF9AKQ+zjWw
MQtCKEmWlypuALz/PdcVlRQE2dIjHhWdIcDEUjho2AiCbU9u2fjVUaA5E/jg
jb0gXG5pWBkIGgXW0bUoGidBcB+v9JYuHQWR05MFne6CoK93UWCfeww0e2tW
jQMF4SG6MyC4PAbxPJ6BjumCQFIDivLvJoDn/XByVKcgTNSHCexXToFXX/Z0
cbcgkGdLDBB+T0Hbnq3sYJ8gDBdlxvJuTIGvzt+uE8OCUPgk/Dq97DQM4Pdo
2ucF4UmLZZFb0TRoZzACJUYIzv5i+RRWMgPUI9KfrnALAV6b+0PT9BzIrySN
jfIIgbfvt7YdqnmwJtsgv8snBI/PHza5n5qHKsmq688EheBCiIWIoN883A4E
wp/jQpBko3s7m20BpLxPDi+dFAKZO/mlIskL8D93qhy/
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwVV3c41o8XNTIyX5vXet+XELJC+Pr2ORGaRFRW2YmMUBTJ3jOJCqGSjFIh
o5B8iRBRslLJSJQyM+rn99d9znPOPc9z7z/3XKqDl5kzAx0d3WF6Orr/1+xg
B2ZVp/idzX6xb9nqmZBjNa1zlHKKOIuYQOkuJvQfjPOhUM4TZNpY2v5PTPA3
suRiosQSumROw0ZGZhg2wWZJ8hqxlqo+YLaXGaVh6uGzkveIVOsLSmx9zPhk
f19wRrKaqFA+fl9inQWBpu523yRbifnXYQnO59jwJ1xTZCShlWDNWvVYSGBD
SCX9mze/W4l/SX/jM2+xIUI0U7+mp404U2xcL9zNhqSxJpnY6HbCNqC+m2Eb
O3LPS8zI/HhNjMWP7U2YZMdo16Su6okegqlI7+a0Jyc2/77RelppgGhPS091
O06CVnT/hX32A0RNKY+GjzsJrgJCinJXBog/ac07IgJIaFa9nDT6e4C4/Gwi
sOUyCRFuMYet/hskzgb1TLxqIYFuyG/YyGaYKIuPLerZzoPAkYIAHoOPBKfW
DaooPy/ONF5KmPYZJfZnnlUOX+LDMs+V0sH4UWIp+biwMAs/gu0LO9tujxKf
cmny1YL8SKDrJt17N0rQG2p9l9TkR+FOWrqzzhfCQEByU+hZfnysacr+QD9G
lM7mD15b5Mehx5sfdKWME11/eM+4MwhC6XZad/n9r8RfsRd/u/WEwZ+pstTQ
+pVg84vWtzkqjNX4DrGOL18JBwuRb0vuwnjpy+I6Rp4i1vZdzXVMF4aDfuAf
gegpItrJYDfXV2Gkf3ZQ8D/xjZjf6Xf5WZoI1ihqkdqkGaKsZw/37CIZY8au
YiNas0TYD7M3Ssvi4G8+LR1sMEtokLUVh7gloPfvGUVxs1lCga5fJ0tWArkK
F3St3WcJ8UHPh+ZHJWDDmmDTlz1LxJXn3i58IoE3zx9kvWb4SfBVWL/+GiiJ
OvUlsYb2n8Sic2pMTiwFGeQo8Ty7OULT1Tf7KGhYHO28a+w5R9T57YpeNqHB
vFRIbS1wjvBfZekpOEEDL+4ZHs2YI1ZHjtcpXKIhwbndi7NzjlDSDZZ9X0dD
SBlv4/l/5olXVkHB/0EKroY3XcwEF4i2i/cVDU2koe1T9YCxfZEI2u5bmXdN
Bl1//zl+pn+RkGzo98wrkYFLYj3HyPgiUbx3UfJhvQwuFzafqqFfIticefLp
xmUw9aFX6syOJeLsibhc++2yyNr/M+ND/hKxcOhr6I5uWfyRlg+pPr9M3OC8
IZgushUv+m4c8pJdIRT/KvmbflTAFQeL+YXtK4SDuMlbxUUFuMxwZQZhheAg
ZxwR4VAEG2PYSKzlClGc6Lq8RUsRh5RcPW/HrxDSeuPbuVMV8SFCPaH/xwph
abkcvs1wG1ZUO1r0q1YJLvWhlNVnSlBN+LNTeO860Xc81Sp2TgVqp9acSo+s
EzVNtdZz9KpQN1yJ03NaJ3rTM3JOkVShSbf47vSldWIwVowvcJsqdP1mPJ9X
rBPBwrbDaq6q2GMzlONG+0MspmD33xFV2CnW/Hm6+ocIPuVz72i/GozGdUZU
jtKh7+eX3JgFdbj09E5H29Ihqm/ES4FZAxENnisfHOnQfHWH76CgBp5fzxdI
9KaDvdMvOGpp4B8TtgNfYzf6h0QofEEaUK7qr8p7Sof2sbXd60yaEIoLuMxL
o8e2q4lFRtI7MLGt0mB+mh5k2fSdmonaoF30cFaYowfH7ugfQnnasGmXjnT4
TY8h2TrhzRXa6HJLa+piYkBY2NZN5GFt1Nz11i+VYIC1icnlpW06SKAq7HI5
xIASsTqDkjc6UBXI1X3/mAF2bmM9h+V0EbgWu/3pBUasxNq/vcBCoNPP8cqF
UEY8c6R+KaUSoMzoLmjFMOJx4RLP0j8EmoZ/VFakM8LxfqlAuzcBjnoLnQdl
jBiwoLaHDRLICaXuyh9nhO3pI13XrIDnzNXGMWabEBBY0Snw7y6w8EyeMpdn
QsY+e6XzsvpYjLYxuKnChIEFpV/JmvoY/9NFmdJkwgzvdOYjA300T1f3XdJn
AqtXWbmokz6iXsYbFNswYfWmw7bgPH0whyhTGZKZQFL8HZggsRvMP869fzDH
hPlG5c+8NAMwdTAZsT9jRuokqwejqRE4PLIch18wY/rMac4ZJyPwc24PedDG
jMsLeg8mAowgfdCu+vB7ZmgvnVYl5Rlhd0eNQtYcM+yF3FqVfxkhrMOLtE2e
BZpflnZWZuwBXWd/v3EGC0ySWK7vm92L1c7S05fPsGJ+8FIb9+ABSHTb39gd
wIpnO45MYO4A9HoE2haDWZEybXIgiv0g4vouylonsMLfo17NWPcghD8e/Cx1
lxXGXEqmvTkHoflz5mjFECusjcvoWk8aw5tPSf+90WY8af2+d3LTIYwdvS8i
IcGGaSl56o5WUxQcW2+0kWaD38vFZok+U7haHjh9Q54Nm2YK9vOMmWLKaqpO
eAcbdD5U8gnRm2HWVsaJ7xAbBkqVkgq0zbDmmHOfNYwN7gG29UMlZuDzTtKf
G2NDmlArz5cbh7ErxtPjZSk7thS4dTnnWID8aORoUjk7Hu+/rF5bZrEx9yE9
81p28HF8laa8sECB8nahjy/ZMeU//UF40gIcfUsNS6Mb2OcfxRa1I3i3JZRf
lswBxnsPZ2mvjsD9RVptZBQH9v20LdjBegzpf6o265/gROZZrgj6J1bgkP3P
M92ZE1920+2WabdChEl3z4Q7JzpTPtVbf7KCT+7X7IQATnD+40/5zW4NYz2y
2rtUTlTOWa/8sbcGc1Sg1akmTmya3T+ix2ODAM6dxclbuZAZSBHmuGgLa7EX
B4bmuDDpm7DrpKEdpjx+/qpY4ULJ2MhrG3M7BNRLXkum54bEgd1HjzvY4apD
0JgeNzeWg20uRAbb4U2hRvA9eW4cFQ3d7vzEDvs0Ch+cs+eG3/ObWb4K9tAx
TuTlec2NG6zKoULiDuBoUJimWZDASccXMi/nhM/XTF9eOrZxpzUrbL5rO+GJ
r//tIWsSDnr0RSzuc4KD7Aubqw4k7JZvn1D12OCTrDo2e5Pwy5HhwJFHG7xt
7P3ZOBJYPlbutyOcUbUy7l3XQIKw9HWi28kFzhr5C5aKPCC5OKawf3RFXJIA
90VlHqS0qcSkz7ni/kSMXK4aD2Qu/HivxHIKi9e8rMe1eHA6K6wiWekUYv7o
Pvcx4AHb34/32YNPoailLyH+OA8ifv21W5J0w3dLTulnKTx4LChcteDlDv/g
ADPKAg+MTftVvPQ9ITcdxBG9zAOb3K0/NGw98d4ytHlmlQeWqX15vP6e0NKI
06ll4IXUeTllrmJPLH+7QTtC4kUuhfabm98LFyzrf8Ur8MK2KnXVeMoLwerM
aUv2vJDW9n9D7fVG5FRaT2cnLzxf1ebpP/FBRN9Y22o3L3QMBO23NG/gph2N
cm839KHPFnjf+iAsZ7AsbHCDv5vVxDPng2AzqSTNSV5Et03R31T2xbmaR3ty
6Pmw6s11nK7YF65x3c881PmQ0eR8QKrYDwfkuQs5rvPh3Erg0Naec7B86VW4
NZsP+qrZt+e/nIOLS1ehYS4fyqy193csnkNIfuq9kAI+9PptPVFI9kc5mb94
/hEfyv0fvWF29IcYu8j9oVd8WGx4Eue56I/pb7TyknU+/O2sE9GSO4/EUs2G
A/b8KIlj2r6nJhAydnL2pU78cHz4NLe2OxB1vGQGLld+nHEbH9X7GohZ/3X9
1578OP69aluicBDM9ZpaTIP48bs3rpA3IAhifaavj2TwQ7Dk+vZZnYsoofP4
YNfBjz1Bgq7eXcFoO3xrzU9bAE9Xqz8bSobiUeTngRu6ArhICWZrUwzF9SfU
6kZCAIWvJIeO6oTCTTT3LMlQAPwlxTlpFqHYPJr1vdhMYCMXyCclJIRij8/V
j5/dBXD02PrV+LVQ/JcS23QoRwA8rF3Vq1/C0NDhlaDIKIj07/8uFPRHQJ0f
7BnMgoi/+/5b0LcIFFqR4ujZBPGwdJ+0w3oEkifKot+RBMHpPp9kRY3Ecfpf
YSESgnC7kFK7yS0Sa+p+53u1BeGgkCu8708ktLMCXIK8BVFUVHJuWS0aj9xC
0T4siPu8T36xdMVC3cHupcwnQZz8oqZfMRaLSkviUOgXQUQFTbT4rcaies/6
Cc1vgpiVViqWl41Dg8z5S7nLgki44xrjeykOHZ+96/z4hFATxqAXvT0ek1Z2
uuJ7hZBS+iRJpigBEvsJLc9yIRQ13fow25uM78/d15OeCOG3uSh5ZCYZ9VqZ
jQ9qhCA7yO3pzZgCO5mfB342COGTbHhmslgK8ulv2ft1CGHv/Scuu01SIFvF
HH9hXAgPO7qrkipToLKlczhKWBg9QnJrwwmp0P9rE34zSBgczX4WOlZpyI0j
f2UMEQapJKO8yC0NawLvjV3DhRF/IIZta2AaKhUPk1XjhKG7z6TNJCsNclZ7
HzZmbPhp8k4ajqSBo0JjZOyRMCQ8P6uNn7yCXjeufxQ3crd92PIQEZEOp3f1
v6osRKAUveOr9nQGSJ/a0kePicD2gli66t8M1H57q8VlIwI2kdF9WryZ4KWf
DnZ0EIFHeBejr1Ym6hWE2bm8RFCtZ7uaE5kJcqi3lGOMCJyhkT9Iu4ZuBao5
Z+2Gnmlb385T17EzNKzCnkKGMP0Wjyi5bCzpZtkHSZHBsf3nZhUiG2XLFZwZ
MmS8Nh7T/2aRDSnvr87timSkneJtvhqeDdYThwR3aJNRO3wm8sVINnp0Jfw5
zMgbd0hZKuRGDlyXq7WehJORHqTX70fKxWWvn7UcE2RgSF7G/nEe+ogsVvcp
MhhJYnomjXkQIxlZtM6QUZExubC3Ow93y7K+R86T8TDtmonzjzw8/WlE/Usv
CgnNtUV1xXyM++ZE/RQTxeyT6ym7CvOhE7Df9J2ZKFK5npbYFt3C55A74zfr
RPGTT1ROuf8OznVlezc9F8WDsd4TdlN3wEa5ujLZJAq9/b0SN1fvQK0+ikvt
lSgusu+yNZAoQPj6Sc2mPlE8u7jAoulUAOkL8lGTs6KIX65JffirAC6+D7ao
SomhmMVc+gS5EN+cq50ao8VgE/1FWTKjCBxtesny8WIbe9x0q7O0CIpK7dWX
k8RwLLjWO7WpCKcXP3A5pouhoX7TcdNfRZiO2lTNeEsMFa5vTZ8aF2P6rgmn
QZ0YIv2qrQ+yl+D717GKlnkxGJ6J+9ibVopZD16WDntxTFy75artW4YTpl89
V53EcbOI+9PhkDJ0qje82+oqjqM3Q1oDEstQsupREOUpjgv+1eyf75bBNbbV
AIHiUK6ZJ7YPl+Hj7ZCIx1fE4Re4qbtv70O8HvxOf71FHExKu/e4KDzC/b2v
1ly2ScBdpvFcOk85FD6UeUSqSMAkKjRoF7UchT5XP9zaLoHlBOP63yrlyL9h
3/BRWwLieYdpyYfKkT6zFG5lKAHLm4HuxinlCEqVZjc+IYErYzlJsrwV2Nd/
UUQjVQJlY/GvYyUrMe6qosm4IIFWZxvtI45V+MFz18h5eeOvfFhj/9e/Css1
4pYtqxIIvDvBVpNQhc2c7EHxDJJIlGQTdaqsguLDsed8JEnMztb0JrBVw/f3
9YPSCpIoPDj29d/KatDFMTkb2EsiUq5FJl60FuTigbToDkkME8lPHah18OnJ
+fygSxJ7rY+8UteuQ+uqg+r7HkmQf0s+EDGtQ8CBb51yA5JoIpurioXWoW9m
dXPbuCQaq5mbmD7XYV8mF5jpKPje8O1kwN16sA4qV+4RocBB0nDr7dwGhNv5
5HfspyDEJKWSZNWI+T9i18MPUsCWL6XcdqoRLtktqdomFKyvfKKknm/EvgGx
0DtmFGhQhHKMrjWC17zlxEVLCmpu8Roc629ErpGY+LaTFJRdKU/jtXmBZ0rN
GQlhFDDFpDQQp5uwtCaSuL96wy+xtU2/phmzc/tjf9dQQPo3jN+hoxmTUxcj
7z6lYOcBQ9+Uj80YeP/pImMDBYwDwgXiLC2oK7/nWdtMQYF26PFV8xZEnNY+
pNBLwW0Nlm1dcy0gDR3jY/9BwdvJk9Db2Qq52oxrbdJUOLxyCI7Z3I6XZ7zL
rWWoeCI1xRYj2Q5Xub2vp2WpENGiG8jUaMe99JVN3ApUqCVwnftu3w55b1vv
w6pUjAaFSbnXtkNhi5TR0L9U1FsnOlee6YBS8v35mSNUNNHtN1/61gkNx/9M
eGKp+NtwxVKZsxtit8d1muKoKP5GF/FQtBsMYywy/glU6GoXMUO+G50u+9aG
kqnQGmnYGWbUDRe314WFV6nQmDqQnxXWjcwz/fS4TQW7GU+G2mo3Vi7NPPas
p4LzTrKEyuIbNGQJCLcvUFHuoxWxLPAWxtnDVIclKnb7XV95IvMWg9l3FJaX
qcgbdqmL2PEWizkahPQaFd+y444ZWr7FtjwLlyAGGvZoT9C5Z7/F9Tvp5Yrc
NFzt2ZKoL/cOfvcFTBPlaKjqO1gevKcPcg0CccbWNDy6JfjmVkU/dEWcM4ds
aJAfvhBe2NoPU5/yArfjNBQk0F49He7HBenDL6LsaeBL7z7IzzyA9piUtbqT
NFiR3p0LOTqAM6bsXsp+NLx5LyF3bH0ANZ/pzEmJNEw5LiXYWgzhINO0+Js6
GkraVV7e0R5B4WT4WmgDDb9djENZzEfA0C46qNpIQ8vzhIhLniOourw/M/U/
GowaXpc/ujUCGqWY17SdBqmI3ok0lo9Y1HFj6eqngf17+Qelsx+R4z052zFP
Q8jQoOwuy0+YHfzyolVeCm0FcvfIRqP4FSz13EZRCloOZnQHj4xinupQ92Ob
FPbw/msW7zyK5ZMjVQKqUlDro3EoRoyCbr6/1H6HFI51en/+83wUJI7XGb/1
N/oHBsN/EV+golvtvtVWCgdnC8OPGIzBKyuRLzZZCpmL1StmARNop5f+sS9V
CiHmKrTVhAncTjmR0bWBVU7nP5JKm8D/AMvre1U=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{0, 10}, {0., 48281.11555596476}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.704623561917432*^9, 3.7046235698598857`*^9}}]
}, Open ]],
Cell[BoxData[
TemplateBox[{"",""},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Input",
CellChangeTimes->{{3.7046233070608544`*^9, 3.704623325222893*^9},
3.7046235487006755`*^9, {3.7046235802554803`*^9, 3.704623587711907*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.704623219288834*^9, 3.7046232443722687`*^9}, {
3.7046232804313316`*^9, 3.704623280432331*^9}, {3.7046233302821827`*^9,
3.704623335688492*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3c81e8XwK+997o2EYkyUoR6DqLIiFBmdkZGVGayV0YyK7u+DREZGZWt
EDLK3jvdi2tn/u7vn8/n9X6d13Ne5znzOcK2HoYOpBgMRoL4+f8/K8iWUtb+
8cXHPQ31R0crKNsMp3RDyBmJ9lzPfEpYQUO6sV5CQn7odd1rCZ2ZFeRz2ZSR
QigGhaWtM8l9X0GazWCxLfgMTQi2qtc/WUFFofJhq4LvkM7hU4eXJ1dQLeUA
/8rHAsRlWjkRKLCCumP9qvDqhUiD866ZL+sKWntai1+6XYys79Nq/tpdRpkG
ooVrA6VovHWsD9u5jKZsPnDiBatRDsOzW9k+y2jp5ZEdbrEalWkpKfi7LaO1
uWsf/36sQSZWvRfu2S0jcpf1q0vqX5BCu89Bg/4yEvNSDFm4XYfy2q5410os
o3OqU5urA42ouyXvC+MMHilNx2R6qjShd9/tLlUM49HFMDn11dwmxPKzYORB
Lx5dbgl7suLcjN5nt0doN+LRTS0xyeW9FvRlb4xE+iUeBRi4Wv8VbEOYUw/5
Wp3x6DDsHPdEXBvScjbqDLDFo+BPJL29/9rQj/ISDR1zPArnzVCv6WtHXZ/I
e9V08ShhrlksJqoDLTiVW4XI4REz9slE4EYHMrUa1uGUwqOn2uYZnjad6Plt
rcxvx/EovZhAc1O5C3mJrn3y5cajXD8BvNjKT1Sf2GMjQIpHLP0bhgynu9HV
r/mjMfs4ZOhhJh1l340a5isfMG3j0O+844v+Pd0Ih8u764TDoWHKL6a273vQ
o/2tQN1BHOLNFT43OtWDpE50LUb04ZDF+ShWE2wvSoREw4EuHBp3NfyhFdGL
WqlFM5pbcGime1FF9lYfekAQ0m8pxyFRFz3u96l9aC8yjraxBIccyco3RTv6
UGEoV31/IQ4tnn30AXv+F5qr6sm5/B8O4Z5zCGHYfiOS4ncb6uk4dEo+YN9P
6zfSd8fBQTIOuXdODq4/+o0smU2zO5/gEOHofdIC7je6P/1SsCwWh7bs1ch+
futHbCSPjRMe4ZDC4ZuJKwf9iDdlU/UgEId80xm+NJ4ZQIsHpB6h/ji01zZ4
71PuAArQeCzx8z4OqdhdNJAZGEC8x0Sj0rxxKGj/5akChkHEvvCsxfsuDmGk
Peaz/AfRpD9NjIcbDqm2/mrk+jiIqFg6JuNdcSjURiknaWEQFevv1TY44xB5
CsXNCKMhlBlSU+nsiEMap1zlj2KH0AJ33psxexyK/NbN7NcwhGYIOa2OdjhE
8+9F253Twygcu321yhqHFKOG/LVthlE/y9uYlFs45MTBJXUiZRhx7V7YD7XC
ofSXRmMU34dRavZycpglDn2TfZow828YxTueUE2zIPqj7idqkBpBl9uSNmrM
cei4HgMh+9YIOvaNOodghkNGo9r5gU9H0GOrfFklIoe7RF83axlBsywFWSmm
OFS+00KuuDOCzpvn/cIQeSaS7BOH5Cjqk0GtQTdxiJVD9fa65SjKj/BwYSSy
2ssgbM+TUXSrw7Co+AYOecl+afvQNIqCAy+E2RI5r+6ff9zWKBrLqBwXI3K3
roKUi8QYolcMLN03Ifp39N7YZYsx5MXoR5ghsoxLacLxxDFE+NeZMErkWzsr
iKxxDKkmdjycJ3JC5CnC5MYYmnm7/ZGEqK+W3TW/Vnwc5W+TCp4mMj7/7fVM
s3FUntJb5UpkPtl5cv/4cWSY6u9dQ2SdOpFPN+rH0ULORXUeov0Buja3z66P
o5LQJL7HRC4YycayiU2g8R/sG/TE+w87j7at3pxAJ+wyanOITLPDHdD1eAJ1
ivLcVSf6TzHyhlRh7QQiDWrB7BDZiT11LIYwgb7Srtt+Jfpfx8D5+xnWSYSX
PxGfTIxPwMRrXxaNSVTbl8nsRYzn09caBsFWkyims8nYnxjvArdZiRWfSdTx
qV4pmZgPw3vCIx0Fk+hFy/zXLVscWmusL1NunkShjvpaqsR8oom9FVcwNokc
Eb1+pgPRHmzWhWjmKXR7oPO/MCccujahzLktMYX+ityaY3Ih2vd6eNlBfQrF
C1gGFhLzN10em6v+YArlKz5I5PQg5s+1ZNKjkSkkllTsUvQAhxixciNum1Mo
yo8v4rMvDolNdJeNMk6jLO1XVUPEejJ2Y3SoUZ1GBuLVeprE+iuPifl+/800
wt7m8puIxqGOaydyZ+un0XKiR5bbY2I+cX33vT48jWIHmF/TJRDz6TX5SVmG
GeQ45afjQ6z3u42P4nBeM6jpT4k+fQ4O7bCkFI08nkHsPGeCafKJ9Wnztqv9
1QxSD5zv4CD2jzhMD/O7/hk0wZv11vw9Dr29eCzVQWkWfTlSWH1RhUOTNc1Z
4yRz6IWdsfnf3zh0m3aotpNnDt0QOO8yOIRDy6b4iS9n5hCd5D/TX2M4tL/D
ceyFwxw6wabSszOHQ1iF269vtM2hKEqlofUtoj/LaIq7n8wT+3vQwxJePBog
FeiuezePMrEyibFCeGRlKEf40DiPlDAHtt7Efn2HYHYmfmMeHbbP6dyVxqNo
6cJKrZsLSNM6iU3gEh7VvderbxRcRNT5tgzKnnh0+lVyT/mHPyidNW84vA+P
2DNktuvb/qDfmOecbcT5tPe4k69z9g+iIR1pFJjGo1ZvKqc5niX0Irj9weEq
HtmqBxxyRC0hn33XrESmZZQ6bSvpc+sv4u159nuPOA/3heQizjMT51iRagf3
+DKaZv9ZoCGJR/r3rwYnLyyjNuo73QaaeEQjHSAvSFhGaav/8boE4pGF+9nK
O+QrSKaeu/T5InHuCC1PTUquILtbJBN79cRzIhh6+aAVNKfnxDehuIrE+tSG
rLCriP3bHdEgjVVEUL4pOM6/itQu3JXiN1xFjYapHxxEVlGupL+Kuesqesqy
VxV/ehVZUMdZDGStoh/nmdZVied6G4ozf5ISUIiqb+fFe6uoVn6br76DgBjD
V5YKBlcR/v2e6K0hAjLg7BBUmVhFfCKYU4dzBOTxKedc/9wq8mOhuaByREBm
lfJCx9dXkfwyj2WV7BpKEOp6dJqRgAreXMwqSVtDN8R3AjY0CCidJ5I/z3od
BfxXLOj7hYC2Zrre6LmvI23pWvqBZgIyKuKS2w9YRyXfMYaqnQTECu80b6Sv
o+7cfGrFcQKKc+jwYOhaR+GVoceKMWsouIS10U95A+WunxfuuLyGnDRzHA05
N1GlU0MSxcQa+sa0uHoksomSq7x3phbX0PEhmYAi2U209JR0o31tDU27NiZS
624ijbq/vxsp15FF0lxVbdgmOgpzCboqvY6ujUrSSRI20egCk2t76Do671VV
TNaxhSrb+yd7z2yg7iNlq7tDW0j+n3fzMbSBHOPr6Cfmt5BEKi8Ea2+gp2+/
OdeQbKPSj3Fy9jYbaGn8l8hdhW0khUFuPYkbKPMqIX08fxtNi4g166xsoEPR
k8HVfjsIwwj24tWbKKW06LR41A7KMh3zvvRtE50E2bGUlB20FlI55Nm3iUzM
FZU8i3fQqds2c9v4TVScpLkhNreDpI9xfKgX2ULWh7ZOKdf+oSHH2GHtp1uo
aeDFNQ/xXXS+R4WkImAbpdgab2ye2UXGur64/pht5IhnzAiEXVQuqnxElbGN
aMlCJ2JMd1HgQWJ/evk2unbayf3V413EIq+y4rG8jcbD5eOGVnZRy9cJASaH
HbQr2/ldvWoPDTKKXPa1+oc6vkS6tjfvIX1DVa0s938o+zIwGfTsIV1mvFdf
0D+kallmYrW0h4QCPEK9c/6h6Ohnc758+8i8MP5h+NQ/xDnhQPYheB9NTabF
/HPaRbJxhxexWgfou7rS/MeIPSTnvG9fZHKAtt9p0394tofkNXdj1ewP0C3+
VeGGoj10DrPVf+fRAaIkGQmT6t9DKvfw7g0VB8j0lygJ74l9dMViNNvl2CH6
2Clzzb17H1lL1Rx+2TtEsQ1c9h/PHCJbmipRQ5oj9OBHW2S99iGym6/QXuA8
Qm83vAWXbA6RY+7HNBa5I3STdvBU/JNDdIf93WlHpyM0rnxSjHPlkNgn0q2Y
fh8ho4tzV/U/HqHL80oTMjcwcJS0O5L/HwYc+37hoiwxcAxGXRlLMRBe7747
bocBsskXRlG1GGh4ns8R74mBwHK6O3kDGFDWp9X5E4OBpipZE19aEpCuGqrK
+4KBcZcpr1ovEuCK9X3KeowEPgiu1vDokcI5H9Zc5xMkwN5mkqZvQQpG9oVF
9adJ4MpX8R/JLqSQdHGy1V2ZBP6kpUZqR5EC3frlo3YjEuhVNpfxbiCFI3Ou
O2FRJFDilLtdr0gGC6c+aWzgSKBcktu6+ww5HHvo5iC5TgLWeZ1VDerkYNEh
GmH7jwRKjzZYm6+TQ7dLcnM3BSk8n7qL3fcmh5o3nupFAqSge1ozSrmCHOKE
JVUdr5GC4j2JizTKFCDLkasyWEYK+n/mUzyMKOGO/Q0LphpSkJwSlnrrSAmv
yxgDNetJQbtuzHzDlxJ4DB9+Lu8ghXrLr+PfsyiBPNFMKWmOFP72vMBbLlJC
PzWHojYXGai/GXIxC6GCgP2YM1/8yaD15cUxlSZq6Lpnl+IfQgbX6vL2Roeo
QQivsqkYTQau4St16avU0Dy28qkilQwE0kfrLQVogL7OWKm4hAwKSSUspANo
IDtEWDV/ngwMzNOMqZRooYGyWi/akBx8g1P0ozrpgP3R02JNU3KYuTyxVL9A
B47brswU1uSwTK1Yy01KD7SLAr0hbuTAI3ZQKKFAD4Zt4cYB0eRwf9CN83s+
Pcw+vmbhXksO1nwcMnzBDEDFsuhsdJICRARptS2MmGArykIjR4YCTspRLDd5
MsH8YbfQ0jkKEEha8b0azwTfcNUDj9QpQCiXcbzmGxNEtj7WeG9BAcEK/1IS
+ZmBMlhamDSRAnR4C7SZU4m88mCweJ0CQsqOUbMnscCWw9+y3X8UsHStKd8t
jwXmR28lamAoYVcmoXPoIwt8a7+iOUJPCQm9z04v9bJA5GueckoxSlDZGMvD
c7ACpVVtouVNSqipP9aRnMMKFJ0Ul+m+EuN6+80rqkY2oHfLtBtrooS6Gvpe
n342YGc4E1zcTgniPPkeJH/ZQFTXuvr6ICU8YWYPt2Fnh0udNZKZ65QwETo7
dNOJHUI7PZhPnaSCotBxPnUODsB0DQ3ppVPBQvRSL1U4J1C7e24JZVNBxb33
1LgXnMDMSMW2/ooK0mI6biyXcYKQnrxOeikVELwn53RnOQF1JdROdFLB8Tz5
Kw81uSCoS/2lJzk1uHw5K9rIjIW9rqI7T+9Sw/VPzILctdwg0GPz4pIvNbzz
rGBKGuIGtT6O9q0galiEODvJTW6IHXgobh5HDRz3g5e/S/EAdlJ3WuQNNbRv
7Zf9l8UD5wj4GxWj1PCWl43AH8kLnmyn1Qcv04BqSfuNW978kMIxfTdWjwZc
svmaQpP5oZIrLVfFmAao5yjmu8r44ZD38CDXlgZMfGZkpjf4IV60q8r5IQ18
YbbC7PkKQMFZ99N7pTSQcvFmg3iMIMzd+MAtIEALqdKpadFzQvD65kGjhSgt
ZD6w2sVuC4GTqc6dFydpYey4iWUttTAsmS3VYhVoQcHlZ9wVKWFYtRSzZ7tG
C6xWG/GW94Rh3y77A3UoLYwUVt/Lpz4GbJ4J6utztGD4H2+RrZoI/PIcw8ni
aMFswZe73UQE0u5KpXmu0UK9Gr+0tqsIYL3bF/GHtCD642p/SooICDygTFjk
ogPjs+bZNxZF4GRg0OCYFh10R8T+K04RBdVod7fWImJd4Y7HZJKIAU/pxI2E
cjrwOozgsOIVg42Ra2pGn+lgdGCiRfWsGLyWPsM12UrUF1Vo5OksBvQD2/Xb
M3QwYTEW49EnBv3HQ9jFeejBv49T9dgHcXBtSv4cEUkPEQ9oLrQ+koBLePLX
V+PpIVc9YkM2WwIEuB48YUmhh+OtFPebv0gQ+9tNh6w8ekj9Zv7ZflcCzrHy
M1V8oQdx/ebBDJ+TgLF5bTu7Rg8tlFXm5P6SkHpYRaN+iwGyfitQvMo9BfTi
Le6pDgww+8NvV6HxFITr9/QtuDKA7LjA3a2ZU+CV+ycrzpcBbOszW9fFT4Oe
Go9cfxIDDNe8D9z6eBooIwPMnJsZYFkVs6zfJQ2+DBffJ0owQol2+FlSDllY
OavNPC3NCJ98zokUn5AFRyuT+/LnGGH71T2V+yqyYFTsjobUGCH9OnmArr0s
yBrk9B2zYAQSBv1N2QpZWErB7FckMMLivb9Lf8zlwJyvSWd0nRHaxPM3sbVn
YMmNsFaxywjt51JlhAfOgG+d4LNEEiY4M7sTqLN6BtJsA+fUmJiAre4uL4OI
PPS+PRv07iQT0Ea1KanEyoP22bfFD2yYgE6j1Tvk1llQ0otnZfnJBA5ZX9TO
iitAW87nqqXfTOC87+RKp6EANwl/rJpHmUDwLd0AnZ0C3E/RfO+zxAQCRWP3
43KIcvyR8AopM5gS7own8yhCypnqGmMBZohio2LbxJ4H+npJ3DFjZuC8+Ltl
VlEZpp8ZtD66yQzG/OHTE+bKUOnt82rUnBkqIjkk6R8pg614k0WaLVHfOUeH
fy1EeYJZJ40nM3DopGefNlEBW8uYD6uxzBCZcv2lZvAFqNqd96ytZ4YmOkYK
swMECb/odXmbmUGZ0rM3mg3A7oOchO93ZnguV6sWegKA0TZoSraLGZzvrX7q
MiTK2zgM/xthhv3XM2O9b4nyjEtn4raY4bPNl+QSM1VwOJu/aSrFAi6dbI7s
A2oQm8DB9FCaBXzlDHCGy2rwYSH6RK4cC9w+fiOhhEIdtp55mM8rsoA8ZuV3
m7w6RB+qNHhpsEC+w56hX4o6FHwfiHtsxQLZ3imj66aXYNmUQfTrExY4/jqb
/9WhBrCWBV+YTGYBzZ/2fkI8mnCOfsOELJ0FBLY0txrOasKj2uEYrSwWSFA2
FL/vpgnMIm9Xfr9jAQruAPX8cU2Qw6l9Xm5kAcqWbKPLrZfBJ8jXUGiTBXh5
B+N1a7TgBC6QPmqHBULSZGKej2nBoGnIN/weC7S+2SrnJdEGxbOxSp9JWeFo
zGXm8xVt2Pn74pgJMys8OrLMDRzWBn/TurXHkqzA8uePvxa1DgTJUyZv27BC
zr220sBEPTidT6tr5cAKGorxJdvVejDOxETV4sQKTDsEbOmsHqC/XAFPPVgh
EPu4al5JHzD5EnanHhK3jgB9ZLakD6FMumfsMlgBExfjN11wDSKWkvu6ulgh
KVDuYbeMIYQPzLXv9bACuLLEVV4hcrNC44nfrNAqZ6Vcb20IodkjJaEjrPD8
7mU1hSRDCDIUSTi3yApfxwy9G9YN4UFN6ZVsEjbQDjf09q67Dk6xPV/d5Nmg
8n7zie9exnDbR6TiuQIblMdgUq4kGoOj/f3C70pssNHH6L323hjsL3K/EFZl
Azevvof1c8Zgs2bt+1uXDfzUBrx0zE3AzGxV7sJtNjhMNw8w07sBOieZ3tI/
ZwMJV3F3rIkpmLZ6vJXIYoNZYdXPvj6m4OjY/VYzlw2sHZ+OUj0zheD8pHfB
r4lzeSCuuGzUFMp52N9vlLIBD9OggpajGfDRcX8Y/cEGZhtiygWh5oD7e6y8
8IANXL0y9PWmLeFfTFh5G4YdrN6X/uCktQLKE7Pl82TscI5rNoFLzgqE7P+r
EKJlh8diMopNoVZgNCpemcLJDuou9IYdYrfgS4dUTaA0Oyidu5i+o2IN8UXn
6nVs2MF7+P1q0BsbELM+YVNkT9RXSluq1mADtaw8pIzEd0FZ/4TB6REbWPU5
UP/pzg7Zluekg5hswUit+btBIDu88LGNpvK3Bb4Bg58m6exw0LF+a8/EDgox
buPWneyAxze3GMk5gEaZ1aOGbnZY2wn8/czAAcYdrgkd+8UOGlX9pUx3HYD5
xxnbmWF28E/CsSeWOMC91N05h0V2EJpI15qTdQTlk9F4FzIOuKvk2qNw8Ta0
X3+5f+88BzRP6LX8fuQMpRHTwy9UOCDdcVNN96UzPK8Urm5EHMQN7POvnW/O
4MKbe59ZkwMMUve88YwuQDOTufzekAP2Uvx8jfNc4IpX2uS0KwdkDOnvO3W7
QsuTmOZr2Rxgve1Xtm/qDoWNrfk+eRwQbZEg8SLcHVI2qEKyX3GAZlp4sW+x
O9jfjLyAK+CAY7XGnmsUHkAuFPYpqpID1uTM4v5WeIBaceDb2m4OkC3jVRBL
8oT6To84KTJOeHHg79jP5QXy7ECXTskJPBm0vflnvOCtGXMsCS0n3LBDkpn6
XpC4UBLVz8wJXZMqvzmjvcCKZC00WIATJt7hXeT3vGBf/p7fr/OcwE/47G28
5A3nM30dAz05wTmsJc9r+T4UTl+Zm/fmhC0jjwQ/5gcgJMFtb+DDCR/FapYq
5R4A9adqG7EgTlCdPecy6vMABn/uWnQ/5oTvKvSELnIfeED28LroG074+TCo
oFjCF0pdQqBjjBOyCcK2Mvn+IG9r3So2xQmc6U+SRX/4wydTdC2E+A5MLnvU
arbhD9VXDm6d+8sJrp9dthMuB0C9mN+j3B1OeDSnXnSMEACd056199i4oEb3
Fa+FwUNYNLNW4dfiAvqJduYy0WBwMUTNPjpcoGc8sVN3IRhwWgI6vfpcUEnN
82TTJBhWFEfNo0y4gPzi4/GRmGDY4rwZQLDjArJeg/RMQjCQ9enXtARxgRmW
Y0mqLQQEriJF93IuMLouPpH2PAyWG1wPEiq5oOQrT/XZyjCoU8xoLK7hgm7X
Dxcwv8LAWoygQ6jngg9flcy5GcMhn+Slzb1OLujhvfTELjwcxKsoH/vPc8HS
Lntuml8EyBzvGovEYmHTrX89IjoKMJm7+W94sVCAv9B64n0U9LCKO7UKYCFE
/3k3pisKvDDBazTHsZBZxN1twB4NFSOyVPGyWPjMR4MPfhkNSk9TZZK1sdCe
EhRt3RED6kcWYTmBWLDMe3ZYoB0HubE8f8iCsfBdaTNB1jcO9jkG9ZzCsDDJ
TQggfx0Hn6Su88jGYiFa4EVQEmk8nDDT+tiYjoWsrPhxk7p4oK84OzFXioUS
Xu0FqiuJ8MuFUVnqDxZcdDESRzpJILP1I/cJDgtXxp8csTgnQXxIDOXmChag
3VXNKCIJNDPIe79uYcGQu/KmU20SVLXsOumTc8OvHavdAbmnkCm0kOYlyA2f
d5yzhY4ng31/3VqVMTdM3cp980s2FZin2lNnbnIT95ZmalnDVPj897ciowU3
BDmitnqvVGAlwQXZ2XJD80hmdUB5KtRJYukYPbjhy6euEielNOAJ8RSxi+YG
bmjJdr2WDj2SwkYMn7mJ8+nk2LM3zyDwnNS2AnHPeOPJls788xmcUFV4btvA
DSZM5y2/bT2DIBPdycrv3CBLn/1hVfM5SIX43bH9xQ0YUVi5uvQcovt7wivx
3MDVHhARcCETLoaEVtgI8QDb2/tFw9gc2FbJtAkU4YGkbwzPOa/kQMlOBUO6
GA+0dA1tZvrkgIjnH4cO4t4i5JY6ETuQA9S3rnEqnOeB8/hx70DdXOhTEfCh
N+QBxV7DJQ1sHjjtVCtWhvEAwa9plr0zH4TL+2Z7InlgQad5t/9PPgx74J/g
YngglcXn7TfKl6C7IPRH+AkP+M4abkqrvgS5/qhncZk80E1J/kyu6iUclBnv
2lTwwHup1C7l4lfw1IPwmX6BByLW8zLSm17DAMqkdl3igTuioSr//XkNfMyX
jdvwPNCXIly3wfQG3pRkLkds8EBzM5OCueUb+EK4LHxEwgt66YyHhntvYN47
O5LAxwtq/dPCppfegZLvVYN+Q16w5WCn02IshEdXtrLkTXgh8GS+cNSFQmjG
5i09NeUFvNq7MC63QtCv3grTt+YF5TZ5P9nOQrDfzfvU6sYLrDN+iWZJRZAQ
uMP7OZoXxiJyxalPFsN08H/zObW84PfU8lHetY/woDvLs7mBF9pzf/VQ3PkI
tEJpu4vNvEBX6oVPi/oIcnWRjHI/eEE0o6cI6j5C2MHtc80DvDBo7FpcI1MK
ov4nIxdXeaHQ4YVePF8ZOHoXH5cV4YPU4mqjZe4K2G18U2wsxgfMwf6YaOUK
SGDNPe8vwQeiZedxNy0r4NPHJ7pN0nxQi2/+l5dXAVSrd+8bq/CBpJrQ1RGp
T/D2jnyLnzEfDMWcGkJ6lfDXodq+MYoPIrjMujPrqoG+XS3x5GM+UHboVTfH
VYPU6Y7qpwl8cItsgeDMXQN3tsYZ7VL5gLxvR9f/Xg3gIsmryV7ygSvpe2+f
058B90afQaOWDw6TF5JdSr/A8p+5iu8bfCBkbjFXcFgHjHoek9I7RHueq78w
5K2H06U7tBl7fLAaZAehCvXg7k9n7UTKDxSRQw/8PethmVaWloaZHyzft/wb
nK2HFclAK21JfggJeD74cqABVt1YqTpt+OEJq7XupcUmuGXwx33Pnh82mLRn
j6iboUu+vl/CiR98MVO4NYlmKNxzex3pzg+prTy/g+80g1NMmwYE8MO6QEaF
5kYzTL4KDi9L4YeaQOWMXsZv8HNkmeT5d34wqbH9+tOrFS7WtTi3tvMDF2vh
gOqLVijMz+zZ6uSHRzOzvTtNrRDrrJ13/Rc/JOjR6ilwtoHm9n/AMMUP2w/L
y8hq24jvGctHwbv80Hm1fusy7w/4oPVj3/GUAGyaF6bzMneB5HiJW4SMANBz
/6E9odoFb73Sxl+eEYCb1RHdkV5dkP/Cpn7yvAB0n5eOvdDfBan47TAzTQFo
nbp8NyfvJwQmidLp3RIAk7xWNvNX3aA99JD7bJIASAYZ3VVw74Xvbnax11ME
IDJDdPZ+XC9cItXau5suABmmZhYLBb1wUZJ97EOWADBonq21X+wF2YcFuScK
BEBo/hVrn0MfYIUHxPmaBMDXW9y+y+UXzDvJnCPbFIATIuqn53L6YYXlzWWH
HQGg/nbm6HZrP+zU8Jt+3xMA0F0xOUvoBxoGusDHpIKwEa/V+VF9AKQ+zjWw
MQtCKEmWlypuALz/PdcVlRQE2dIjHhWdIcDEUjho2AiCbU9u2fjVUaA5E/jg
jb0gXG5pWBkIGgXW0bUoGidBcB+v9JYuHQWR05MFne6CoK93UWCfeww0e2tW
jQMF4SG6MyC4PAbxPJ6BjumCQFIDivLvJoDn/XByVKcgTNSHCexXToFXX/Z0
cbcgkGdLDBB+T0Hbnq3sYJ8gDBdlxvJuTIGvzt+uE8OCUPgk/Dq97DQM4Pdo
2ucF4UmLZZFb0TRoZzACJUYIzv5i+RRWMgPUI9KfrnALAV6b+0PT9BzIrySN
jfIIgbfvt7YdqnmwJtsgv8snBI/PHza5n5qHKsmq688EheBCiIWIoN883A4E
wp/jQpBko3s7m20BpLxPDi+dFAKZO/mlIskL8D93qhy/
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVV3c41o8XNTIyX5vXet+XELJC+Pr2ORGaRFRW2YmMUBTJ3jOJCqGSjFIh
o5B8iRBRslLJSJQyM+rn99d9znPOPc9z7z/3XKqDl5kzAx0d3WF6Orr/1+xg
B2ZVp/idzX6xb9nqmZBjNa1zlHKKOIuYQOkuJvQfjPOhUM4TZNpY2v5PTPA3
suRiosQSumROw0ZGZhg2wWZJ8hqxlqo+YLaXGaVh6uGzkveIVOsLSmx9zPhk
f19wRrKaqFA+fl9inQWBpu523yRbifnXYQnO59jwJ1xTZCShlWDNWvVYSGBD
SCX9mze/W4l/SX/jM2+xIUI0U7+mp404U2xcL9zNhqSxJpnY6HbCNqC+m2Eb
O3LPS8zI/HhNjMWP7U2YZMdo16Su6okegqlI7+a0Jyc2/77RelppgGhPS091
O06CVnT/hX32A0RNKY+GjzsJrgJCinJXBog/ac07IgJIaFa9nDT6e4C4/Gwi
sOUyCRFuMYet/hskzgb1TLxqIYFuyG/YyGaYKIuPLerZzoPAkYIAHoOPBKfW
DaooPy/ONF5KmPYZJfZnnlUOX+LDMs+V0sH4UWIp+biwMAs/gu0LO9tujxKf
cmny1YL8SKDrJt17N0rQG2p9l9TkR+FOWrqzzhfCQEByU+hZfnysacr+QD9G
lM7mD15b5Mehx5sfdKWME11/eM+4MwhC6XZad/n9r8RfsRd/u/WEwZ+pstTQ
+pVg84vWtzkqjNX4DrGOL18JBwuRb0vuwnjpy+I6Rp4i1vZdzXVMF4aDfuAf
gegpItrJYDfXV2Gkf3ZQ8D/xjZjf6Xf5WZoI1ihqkdqkGaKsZw/37CIZY8au
YiNas0TYD7M3Ssvi4G8+LR1sMEtokLUVh7gloPfvGUVxs1lCga5fJ0tWArkK
F3St3WcJ8UHPh+ZHJWDDmmDTlz1LxJXn3i58IoE3zx9kvWb4SfBVWL/+GiiJ
OvUlsYb2n8Sic2pMTiwFGeQo8Ty7OULT1Tf7KGhYHO28a+w5R9T57YpeNqHB
vFRIbS1wjvBfZekpOEEDL+4ZHs2YI1ZHjtcpXKIhwbndi7NzjlDSDZZ9X0dD
SBlv4/l/5olXVkHB/0EKroY3XcwEF4i2i/cVDU2koe1T9YCxfZEI2u5bmXdN
Bl1//zl+pn+RkGzo98wrkYFLYj3HyPgiUbx3UfJhvQwuFzafqqFfIticefLp
xmUw9aFX6syOJeLsibhc++2yyNr/M+ND/hKxcOhr6I5uWfyRlg+pPr9M3OC8
IZgushUv+m4c8pJdIRT/KvmbflTAFQeL+YXtK4SDuMlbxUUFuMxwZQZhheAg
ZxwR4VAEG2PYSKzlClGc6Lq8RUsRh5RcPW/HrxDSeuPbuVMV8SFCPaH/xwph
abkcvs1wG1ZUO1r0q1YJLvWhlNVnSlBN+LNTeO860Xc81Sp2TgVqp9acSo+s
EzVNtdZz9KpQN1yJ03NaJ3rTM3JOkVShSbf47vSldWIwVowvcJsqdP1mPJ9X
rBPBwrbDaq6q2GMzlONG+0MspmD33xFV2CnW/Hm6+ocIPuVz72i/GozGdUZU
jtKh7+eX3JgFdbj09E5H29Ihqm/ES4FZAxENnisfHOnQfHWH76CgBp5fzxdI
9KaDvdMvOGpp4B8TtgNfYzf6h0QofEEaUK7qr8p7Sof2sbXd60yaEIoLuMxL
o8e2q4lFRtI7MLGt0mB+mh5k2fSdmonaoF30cFaYowfH7ugfQnnasGmXjnT4
TY8h2TrhzRXa6HJLa+piYkBY2NZN5GFt1Nz11i+VYIC1icnlpW06SKAq7HI5
xIASsTqDkjc6UBXI1X3/mAF2bmM9h+V0EbgWu/3pBUasxNq/vcBCoNPP8cqF
UEY8c6R+KaUSoMzoLmjFMOJx4RLP0j8EmoZ/VFakM8LxfqlAuzcBjnoLnQdl
jBiwoLaHDRLICaXuyh9nhO3pI13XrIDnzNXGMWabEBBY0Snw7y6w8EyeMpdn
QsY+e6XzsvpYjLYxuKnChIEFpV/JmvoY/9NFmdJkwgzvdOYjA300T1f3XdJn
AqtXWbmokz6iXsYbFNswYfWmw7bgPH0whyhTGZKZQFL8HZggsRvMP869fzDH
hPlG5c+8NAMwdTAZsT9jRuokqwejqRE4PLIch18wY/rMac4ZJyPwc24PedDG
jMsLeg8mAowgfdCu+vB7ZmgvnVYl5Rlhd0eNQtYcM+yF3FqVfxkhrMOLtE2e
BZpflnZWZuwBXWd/v3EGC0ySWK7vm92L1c7S05fPsGJ+8FIb9+ABSHTb39gd
wIpnO45MYO4A9HoE2haDWZEybXIgiv0g4vouylonsMLfo17NWPcghD8e/Cx1
lxXGXEqmvTkHoflz5mjFECusjcvoWk8aw5tPSf+90WY8af2+d3LTIYwdvS8i
IcGGaSl56o5WUxQcW2+0kWaD38vFZok+U7haHjh9Q54Nm2YK9vOMmWLKaqpO
eAcbdD5U8gnRm2HWVsaJ7xAbBkqVkgq0zbDmmHOfNYwN7gG29UMlZuDzTtKf
G2NDmlArz5cbh7ErxtPjZSk7thS4dTnnWID8aORoUjk7Hu+/rF5bZrEx9yE9
81p28HF8laa8sECB8nahjy/ZMeU//UF40gIcfUsNS6Mb2OcfxRa1I3i3JZRf
lswBxnsPZ2mvjsD9RVptZBQH9v20LdjBegzpf6o265/gROZZrgj6J1bgkP3P
M92ZE1920+2WabdChEl3z4Q7JzpTPtVbf7KCT+7X7IQATnD+40/5zW4NYz2y
2rtUTlTOWa/8sbcGc1Sg1akmTmya3T+ix2ODAM6dxclbuZAZSBHmuGgLa7EX
B4bmuDDpm7DrpKEdpjx+/qpY4ULJ2MhrG3M7BNRLXkum54bEgd1HjzvY4apD
0JgeNzeWg20uRAbb4U2hRvA9eW4cFQ3d7vzEDvs0Ch+cs+eG3/ObWb4K9tAx
TuTlec2NG6zKoULiDuBoUJimWZDASccXMi/nhM/XTF9eOrZxpzUrbL5rO+GJ
r//tIWsSDnr0RSzuc4KD7Aubqw4k7JZvn1D12OCTrDo2e5Pwy5HhwJFHG7xt
7P3ZOBJYPlbutyOcUbUy7l3XQIKw9HWi28kFzhr5C5aKPCC5OKawf3RFXJIA
90VlHqS0qcSkz7ni/kSMXK4aD2Qu/HivxHIKi9e8rMe1eHA6K6wiWekUYv7o
Pvcx4AHb34/32YNPoailLyH+OA8ifv21W5J0w3dLTulnKTx4LChcteDlDv/g
ADPKAg+MTftVvPQ9ITcdxBG9zAOb3K0/NGw98d4ytHlmlQeWqX15vP6e0NKI
06ll4IXUeTllrmJPLH+7QTtC4kUuhfabm98LFyzrf8Ur8MK2KnXVeMoLwerM
aUv2vJDW9n9D7fVG5FRaT2cnLzxf1ebpP/FBRN9Y22o3L3QMBO23NG/gph2N
cm839KHPFnjf+iAsZ7AsbHCDv5vVxDPng2AzqSTNSV5Et03R31T2xbmaR3ty
6Pmw6s11nK7YF65x3c881PmQ0eR8QKrYDwfkuQs5rvPh3Erg0Naec7B86VW4
NZsP+qrZt+e/nIOLS1ehYS4fyqy193csnkNIfuq9kAI+9PptPVFI9kc5mb94
/hEfyv0fvWF29IcYu8j9oVd8WGx4Eue56I/pb7TyknU+/O2sE9GSO4/EUs2G
A/b8KIlj2r6nJhAydnL2pU78cHz4NLe2OxB1vGQGLld+nHEbH9X7GohZ/3X9
1578OP69aluicBDM9ZpaTIP48bs3rpA3IAhifaavj2TwQ7Dk+vZZnYsoofP4
YNfBjz1Bgq7eXcFoO3xrzU9bAE9Xqz8bSobiUeTngRu6ArhICWZrUwzF9SfU
6kZCAIWvJIeO6oTCTTT3LMlQAPwlxTlpFqHYPJr1vdhMYCMXyCclJIRij8/V
j5/dBXD02PrV+LVQ/JcS23QoRwA8rF3Vq1/C0NDhlaDIKIj07/8uFPRHQJ0f
7BnMgoi/+/5b0LcIFFqR4ujZBPGwdJ+0w3oEkifKot+RBMHpPp9kRY3Ecfpf
YSESgnC7kFK7yS0Sa+p+53u1BeGgkCu8708ktLMCXIK8BVFUVHJuWS0aj9xC
0T4siPu8T36xdMVC3cHupcwnQZz8oqZfMRaLSkviUOgXQUQFTbT4rcaies/6
Cc1vgpiVViqWl41Dg8z5S7nLgki44xrjeykOHZ+96/z4hFATxqAXvT0ek1Z2
uuJ7hZBS+iRJpigBEvsJLc9yIRQ13fow25uM78/d15OeCOG3uSh5ZCYZ9VqZ
jQ9qhCA7yO3pzZgCO5mfB342COGTbHhmslgK8ulv2ft1CGHv/Scuu01SIFvF
HH9hXAgPO7qrkipToLKlczhKWBg9QnJrwwmp0P9rE34zSBgczX4WOlZpyI0j
f2UMEQapJKO8yC0NawLvjV3DhRF/IIZta2AaKhUPk1XjhKG7z6TNJCsNclZ7
HzZmbPhp8k4ajqSBo0JjZOyRMCQ8P6uNn7yCXjeufxQ3crd92PIQEZEOp3f1
v6osRKAUveOr9nQGSJ/a0kePicD2gli66t8M1H57q8VlIwI2kdF9WryZ4KWf
DnZ0EIFHeBejr1Ym6hWE2bm8RFCtZ7uaE5kJcqi3lGOMCJyhkT9Iu4ZuBao5
Z+2Gnmlb385T17EzNKzCnkKGMP0Wjyi5bCzpZtkHSZHBsf3nZhUiG2XLFZwZ
MmS8Nh7T/2aRDSnvr87timSkneJtvhqeDdYThwR3aJNRO3wm8sVINnp0Jfw5
zMgbd0hZKuRGDlyXq7WehJORHqTX70fKxWWvn7UcE2RgSF7G/nEe+ogsVvcp
MhhJYnomjXkQIxlZtM6QUZExubC3Ow93y7K+R86T8TDtmonzjzw8/WlE/Usv
CgnNtUV1xXyM++ZE/RQTxeyT6ym7CvOhE7Df9J2ZKFK5npbYFt3C55A74zfr
RPGTT1ROuf8OznVlezc9F8WDsd4TdlN3wEa5ujLZJAq9/b0SN1fvQK0+ikvt
lSgusu+yNZAoQPj6Sc2mPlE8u7jAoulUAOkL8lGTs6KIX65JffirAC6+D7ao
SomhmMVc+gS5EN+cq50ao8VgE/1FWTKjCBxtesny8WIbe9x0q7O0CIpK7dWX
k8RwLLjWO7WpCKcXP3A5pouhoX7TcdNfRZiO2lTNeEsMFa5vTZ8aF2P6rgmn
QZ0YIv2qrQ+yl+D717GKlnkxGJ6J+9ibVopZD16WDntxTFy75artW4YTpl89
V53EcbOI+9PhkDJ0qje82+oqjqM3Q1oDEstQsupREOUpjgv+1eyf75bBNbbV
AIHiUK6ZJ7YPl+Hj7ZCIx1fE4Re4qbtv70O8HvxOf71FHExKu/e4KDzC/b2v
1ly2ScBdpvFcOk85FD6UeUSqSMAkKjRoF7UchT5XP9zaLoHlBOP63yrlyL9h
3/BRWwLieYdpyYfKkT6zFG5lKAHLm4HuxinlCEqVZjc+IYErYzlJsrwV2Nd/
UUQjVQJlY/GvYyUrMe6qosm4IIFWZxvtI45V+MFz18h5eeOvfFhj/9e/Css1
4pYtqxIIvDvBVpNQhc2c7EHxDJJIlGQTdaqsguLDsed8JEnMztb0JrBVw/f3
9YPSCpIoPDj29d/KatDFMTkb2EsiUq5FJl60FuTigbToDkkME8lPHah18OnJ
+fygSxJ7rY+8UteuQ+uqg+r7HkmQf0s+EDGtQ8CBb51yA5JoIpurioXWoW9m
dXPbuCQaq5mbmD7XYV8mF5jpKPje8O1kwN16sA4qV+4RocBB0nDr7dwGhNv5
5HfspyDEJKWSZNWI+T9i18MPUsCWL6XcdqoRLtktqdomFKyvfKKknm/EvgGx
0DtmFGhQhHKMrjWC17zlxEVLCmpu8Roc629ErpGY+LaTFJRdKU/jtXmBZ0rN
GQlhFDDFpDQQp5uwtCaSuL96wy+xtU2/phmzc/tjf9dQQPo3jN+hoxmTUxcj
7z6lYOcBQ9+Uj80YeP/pImMDBYwDwgXiLC2oK7/nWdtMQYF26PFV8xZEnNY+
pNBLwW0Nlm1dcy0gDR3jY/9BwdvJk9Db2Qq52oxrbdJUOLxyCI7Z3I6XZ7zL
rWWoeCI1xRYj2Q5Xub2vp2WpENGiG8jUaMe99JVN3ApUqCVwnftu3w55b1vv
w6pUjAaFSbnXtkNhi5TR0L9U1FsnOlee6YBS8v35mSNUNNHtN1/61gkNx/9M
eGKp+NtwxVKZsxtit8d1muKoKP5GF/FQtBsMYywy/glU6GoXMUO+G50u+9aG
kqnQGmnYGWbUDRe314WFV6nQmDqQnxXWjcwz/fS4TQW7GU+G2mo3Vi7NPPas
p4LzTrKEyuIbNGQJCLcvUFHuoxWxLPAWxtnDVIclKnb7XV95IvMWg9l3FJaX
qcgbdqmL2PEWizkahPQaFd+y444ZWr7FtjwLlyAGGvZoT9C5Z7/F9Tvp5Yrc
NFzt2ZKoL/cOfvcFTBPlaKjqO1gevKcPcg0CccbWNDy6JfjmVkU/dEWcM4ds
aJAfvhBe2NoPU5/yArfjNBQk0F49He7HBenDL6LsaeBL7z7IzzyA9piUtbqT
NFiR3p0LOTqAM6bsXsp+NLx5LyF3bH0ANZ/pzEmJNEw5LiXYWgzhINO0+Js6
GkraVV7e0R5B4WT4WmgDDb9djENZzEfA0C46qNpIQ8vzhIhLniOourw/M/U/
GowaXpc/ujUCGqWY17SdBqmI3ok0lo9Y1HFj6eqngf17+Qelsx+R4z052zFP
Q8jQoOwuy0+YHfzyolVeCm0FcvfIRqP4FSz13EZRCloOZnQHj4xinupQ92Ob
FPbw/msW7zyK5ZMjVQKqUlDro3EoRoyCbr6/1H6HFI51en/+83wUJI7XGb/1
N/oHBsN/EV+golvtvtVWCgdnC8OPGIzBKyuRLzZZCpmL1StmARNop5f+sS9V
CiHmKrTVhAncTjmR0bWBVU7nP5JKm8D/AMvre1U=
"]]}}, InsetBox[
StyleBox[Cell["\[CapitalGamma](x+1)",
GeneratedCell->False,
CellAutoOverwrite->False,
CellBaseline->Baseline,
TextAlignment->Left,
FontSize->14],
FontFamily->"Times",
FontWeight->Plain,
Background->GrayLevel[1.]], {6.709900785499943, 36004.26514466293}, {
Left, Top}, {1.1647374948518425`, 3797.8376003510543`}, {{1., 0.}, {0.,
1.}},
Alignment->{Left, Top}], InsetBox[
StyleBox[Cell[TextData[Cell[BoxData[
FormBox[
SuperscriptBox["e",
RowBox[{"x", "+", "1"}]], TraditionalForm]],
FormatType->"TraditionalForm",
FontSize->18]],
GeneratedCell->False,
CellAutoOverwrite->False,
CellBaseline->Baseline,
TextAlignment->Left,
FontSize->16],
FontFamily->"Times",
FontWeight->Plain,
Background->GrayLevel[1.]], {9.09001653533333, 23766.78846607163}, {
Left, Top}, {0.7933719170717545, 5485.765422729301}, {{1., 0.}, {0., 1.}},
Alignment->{Left, Top}]},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{22.772109, 0.5}, {1.620542, 1.100596}},
ImageSize->{434.6666666666637, Automatic},
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{-0.20833333333333337`,
10.208333333333334`}, {-2682.2841975535976`, 50963.39975351836}},
PlotRangeClipping->True,
PlotRangePadding->Automatic,
Ticks->{Automatic, Automatic}]], "Input",
CellChangeTimes->{{3.704622545814314*^9, 3.704622566751511*^9}, {
3.7046226346343937`*^9, 3.704622667317263*^9}, {3.704622724868555*^9,
3.7046227289347878`*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.704622191239033*^9, 3.704622227771123*^9}, {
3.704622276887932*^9, 3.704622296644062*^9}, {3.7046223434067364`*^9,
3.7046223601706953`*^9}, {3.7046224348789682`*^9, 3.704622458422315*^9},
3.7046225008677425`*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"hm", "[",
RowBox[{"z_", ",", "m_"}], "]"}], ":=",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"BernoulliB", "[",
RowBox[{"2", "n"}], "]"}], "/",
RowBox[{"(",
RowBox[{"2", "n", "*",
RowBox[{"(",
RowBox[{
RowBox[{"2", "n"}], "-", "1"}], ")"}]}], ")"}]}], "*",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"z", "^",
RowBox[{"(",
RowBox[{
RowBox[{"2", "n"}], "-", "1"}], ")"}]}], ")"}]}]}], ",",
RowBox[{"{",
RowBox[{"n", ",", "m"}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.7021143389125643`*^9, 3.702114352422188*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"sm", "[",
RowBox[{"z_", ",", "m_"}], "]"}], ":=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"\[ExponentialE]", "^",
RowBox[{"(",
RowBox[{"hm", "[",
RowBox[{"z", ",", "m"}], "]"}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"z", ",", "\[Infinity]", ",",
RowBox[{
RowBox[{"2", "m"}], "-", "1"}]}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.702114386102647*^9, 3.7021144055402813`*^9}, {
3.702906553555249*^9, 3.702906555630368*^9}, {3.704636028880005*^9,
3.704636034527215*^9}, {3.7047047762688413`*^9, 3.704704778562045*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.704637370995966*^9, 3.704637379482381*^9},
3.704638008023085*^9}],
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"Clear", "[", "z", "]"}], ";",
RowBox[{
RowBox[{"Sn", "[", "p", "]"}], "=",
RowBox[{
SqrtBox[
RowBox[{"2", "\[Pi]"}]],
RowBox[{"z", "^",
RowBox[{"(",
RowBox[{"z", "+",
RowBox[{"1", "/", "2"}]}], ")"}]}],
RowBox[{"\[ExponentialE]", "^",
RowBox[{"(",
RowBox[{"-", "z"}], ")"}]}], "*",
RowBox[{"N", "[",
RowBox[{
RowBox[{"Normal", "[",
RowBox[{"sm", "[",
RowBox[{"z", ",", "p"}], "]"}], "]"}], ",", "30"}], "]"}]}]}],
";"}], ",",
RowBox[{"{",
RowBox[{"p", ",", "1", ",", "61"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.704635839634072*^9, 3.7046358465136843`*^9},
3.7046363231345215`*^9, {3.7046370986506877`*^9, 3.7046371322063465`*^9}, {
3.704637175153222*^9, 3.7046371921572523`*^9}, 3.7046373628059516`*^9, {
3.7046374937213817`*^9, 3.704637495624585*^9}, {3.704637802617524*^9,
3.7046378186855526`*^9}, {3.7046380112054906`*^9, 3.704638012157092*^9}, {
3.7047046766938667`*^9, 3.704704739452777*^9}, {3.7047055835408287`*^9,
3.7047055836500287`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"z", "=", "5"}], ";",
RowBox[{"DiscretePlot", "[",
RowBox[{
RowBox[{"Sn", "[", "n", "]"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "1", ",", "45"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"119.9", ",", "120.2"}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.7046354778850365`*^9, 3.7046354828614454`*^9}, {
3.7046355924828377`*^9, 3.704635632356508*^9}, 3.704635766766344*^9, {
3.7046372137788897`*^9, 3.7046372443081436`*^9}, {3.704637457529318*^9,
3.7046374918025784`*^9}, {3.7046375249682364`*^9,
3.7046375305218463`*^9}, {3.7046380921384325`*^9, 3.704638108440461*^9}, {
3.7046381408573184`*^9, 3.704638143556123*^9}, {3.7047039625097227`*^9,
3.704703974287743*^9}, 3.7047045365208197`*^9, 3.704704665742647*^9, {
3.704704745037586*^9, 3.7047047512931976`*^9}, {3.704705521984517*^9,
3.7047055630401897`*^9}, {3.7047055988912554`*^9,
3.7047056903486166`*^9}, {3.70470572448868*^9, 3.7047057361106997`*^9}, {
3.704733387412634*^9, 3.704733387551642*^9}, {3.7047334233686905`*^9,
3.7047334339762974`*^9}}],
Cell[BoxData[
GraphicsBox[{
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.01388888888888889],
AbsoluteThickness[1.6], {
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.01388888888888889],
AbsoluteThickness[1.6], Opacity[0.2],
LineBox[{{{42., 119.15373404891506`}, {42., 119.9}}, {{44.,
75.19001925496808}, {44., 119.9}}},
VertexColors->None]},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.01388888888888889],
AbsoluteThickness[1.6], Opacity[0.2], LineBox[CompressedData["
1:eJxdzrtLm1EcxvGTOhiqGIegginEEEOqIUSTGHMzTy526mQHXfoWCpYObR1c
XEqjk9RRHBR1EVxt/wARBEsnRXDyQkspHW2oeCXkbaTN+57fc+A3PHz4wul5
OTU22aSU6q/fg//371VyarEl8Mh8jsZeWa6/28ZW6Di/TCllWFu6E59OXzts
d5K3Y+z4zDRNe0t3w7Vw/zPD2tK7MDNnan0XuQetnUrrPeRezN/pvZfchw2H
3vvI/Xhl6r2fPIBRpfcB8iBORB8k70On6PvIQ6iIPkQeRpvow+QRXIg+Qj5A
/QD5IH6LfpA8ig7RR8lj+Cb6GHkcCdHHyYewJvoh8gT2RJ8gH8Z4Te+HyZP4
2aT3SfIUuq/0PkWeRn+33qfJM9jc0vsMeRbPTL3Pko/gw0pV60fIc5gwWrU+
Rw5MVw60HtLLwJvvX+y+TK7yWMJS1e7z1Odx9+6Py+7JVQGeH48/232B+gLc
N5FVh9WTqyKcvl7PtWlv2RfxdbayG7V6clXC/tqv9d2avWVfgnHk3q41G9aW
PoqHO6HqdfmFtaU/wdu5j08Px99bu+F/AdeFkE8=
"],
VertexColors->None]}}},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.01388888888888889],
AbsoluteThickness[1.6], {}, PointBox[CompressedData["
1:eJxdys8rw3EYB/DP7GCxzGFtalMsljEaw5gfe+/nyWnKXEwpchgOLi4yKyWO
2kXmolzHHyC18qsWKTn4EUmOfCMmrX2R777f5+Opp6f3+/XUjs2Ex0sYY80/
+3v/RvCwtXJrtTgCqYDh+d3NWFTKGuzcTKqUXInw1a0oyv966FbVTPEqzCVE
4mZojYx4DZa/qFuwpaJehwmRuhVBRr0B15w3wsi5HQLnLajg3IE3zlv/eRte
OHfCwHk77jjvgIvzTqQ4d+GA8y5ECtS78aim7obpg3oPmkzUe7Gdpt6HQZF6
PxbW88Q9GI5qiQOzwpnicSB2f0jciySSecW9+Jp+1Snug/nBtqu4D/pPx4ZK
dj80lnpzTnY/jheFjFP2AE5TT5uZQtEDiF7o9wqlRQ8iaxw6ujwpehBl+/Z8
Lj4qeQjp2FLIlg1LHsJUYmXgPDKPb/8AvLk=
"]], {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 119.9},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImageSize->{435.99999999999903`, Automatic},
Method->{
"MessagesHead" -> DiscretePlot, "AxisPadding" -> Scaled[0.02],
"DefaultBoundaryStyle" -> Automatic, "DefaultPlotStyle" -> {
Directive[
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.922526, 0.385626, 0.209179],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.528488, 0.470624, 0.701351],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.772079, 0.431554, 0.102387],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.363898, 0.618501, 0.782349],
AbsoluteThickness[1.6]],
Directive[
RGBColor[1, 0.75, 0],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.647624, 0.37816, 0.614037],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.571589, 0.586483, 0.],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.915, 0.3325, 0.2125],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.40082222609352647`, 0.5220066643438841, 0.85],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.9728288904374106, 0.621644452187053, 0.07336199581899142],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.736782672705901, 0.358, 0.5030266573755369],
AbsoluteThickness[1.6]],
Directive[
RGBColor[0.28026441037696703`, 0.715, 0.4292089322474965],
AbsoluteThickness[1.6]]}, "DomainPadding" -> Scaled[0.02],
"RangePadding" -> Scaled[0.05]},
PlotRange->{{0, 45.}, {119.9, 120.2}},
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {Automatic, Automatic}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.704704517129986*^9, 3.704704554117651*^9},
3.704704638342199*^9, 3.7047047525568*^9, 3.704704795238475*^9, {
3.704705547100561*^9, 3.7047055648341928`*^9}, {3.70470560180846*^9,
3.704705628361707*^9}, {3.704705679520198*^9, 3.704705691473819*^9}, {
3.7047057263606825`*^9, 3.7047057373587017`*^9}, 3.7047333897367673`*^9, {
3.704733425432809*^9, 3.704733435380378*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"z", "=", "5"}], ";",
RowBox[{"DiscretePlot", "[",
RowBox[{