-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathZeta.nb
10896 lines (10781 loc) · 440 KB
/
Zeta.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 439823, 10887]
NotebookOptionsPosition[ 435364, 10732]
NotebookOutlinePosition[ 435703, 10747]
CellTagsIndexPosition[ 435660, 10744]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Coeficientes fun\[CCedilla]\[ATilde]o Zeta", "Section",
CellChangeTimes->{{3.6654856986721945`*^9, 3.6654857320394545`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Pi", "*",
RowBox[{"Coth", "[",
RowBox[{"Pi", "*", "z"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6652302298802767`*^9, 3.665230256731443*^9}, {
3.6652302985778074`*^9, 3.665230330613876*^9}, 3.665485600536419*^9}],
Cell[BoxData[
InterpretationBox[
RowBox[{
FractionBox["1", "z"], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[Pi]", "2"], " ", "z"}], "3"], "-",
FractionBox[
RowBox[{
SuperscriptBox["\[Pi]", "4"], " ",
SuperscriptBox["z", "3"]}], "45"], "+",
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["\[Pi]", "6"], " ",
SuperscriptBox["z", "5"]}], "945"], "-",
FractionBox[
RowBox[{
SuperscriptBox["\[Pi]", "8"], " ",
SuperscriptBox["z", "7"]}], "4725"], "+",
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["\[Pi]", "10"], " ",
SuperscriptBox["z", "9"]}], "93555"], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "z", "]"}], "11"],
SeriesData[$CellContext`z, 0, {}, -1, 11, 1],
Editable->False]}],
SeriesData[$CellContext`z, 0, {
1, 0, Rational[1, 3] Pi^2, 0, Rational[-1, 45] Pi^4, 0, Rational[2, 945]
Pi^6, 0, Rational[-1, 4725] Pi^8, 0, Rational[2, 93555] Pi^10}, -1, 11, 1],
Editable->False]], "Output",
CellChangeTimes->{{3.6652303083028283`*^9, 3.665230332263878*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{"z", "/",
RowBox[{"(",
RowBox[{
RowBox[{"Exp", "[", "z", "]"}], "-", "1"}], ")"}]}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "6"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.665231299402067*^9, 3.6652313475755434`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{"1", "-",
FractionBox["z", "2"], "+",
FractionBox[
SuperscriptBox["z", "2"], "12"], "-",
FractionBox[
SuperscriptBox["z", "4"], "720"], "+",
FractionBox[
SuperscriptBox["z", "6"], "30240"], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "z", "]"}], "7"],
SeriesData[$CellContext`z, 0, {}, 0, 7, 1],
Editable->False]}],
SeriesData[$CellContext`z, 0, {1,
Rational[-1, 2],
Rational[1, 12], 0,
Rational[-1, 720], 0,
Rational[1, 30240]}, 0, 7, 1],
Editable->False]], "Output",
CellChangeTimes->{3.6652313496355596`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"Exp", "[", "z", "]"}], "-", "1"}], ")"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "6"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6652346435862327`*^9, 3.6652346601482563`*^9}, {
3.665234871695496*^9, 3.6652348823985147`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{"z", "+",
FractionBox[
SuperscriptBox["z", "2"], "2"], "+",
FractionBox[
SuperscriptBox["z", "3"], "6"], "+",
FractionBox[
SuperscriptBox["z", "4"], "24"], "+",
FractionBox[
SuperscriptBox["z", "5"], "120"], "+",
FractionBox[
SuperscriptBox["z", "6"], "720"], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "z", "]"}], "7"],
SeriesData[$CellContext`z, 0, {}, 1, 7, 1],
Editable->False]}],
SeriesData[$CellContext`z, 0, {1,
Rational[1, 2],
Rational[1, 6],
Rational[1, 24],
Rational[1, 120],
Rational[1, 720]}, 1, 7, 1],
Editable->False]], "Output",
CellChangeTimes->{
3.6652346639842644`*^9, {3.6652348741395006`*^9, 3.6652348849765196`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"z", "/", "2"}], "*",
RowBox[{"Coth", "[",
RowBox[{"z", "/", "2"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{
3.6654789977745657`*^9, {3.6654819237625046`*^9, 3.6654820099526563`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw113k0VV3YAHCihGu85gq5jSReU0p5tggpSqYyRYVCpLyFShmaJKkMyVCk
iCISXmFfQzKXMhTKLJdw7mDM8J1vre/746yzfuucs89eez/Ps/def8L3iNsK
Li6uRfL63/vV3+as5WUaPcWHOnORSwL5p8lMdS3Q6D6HI9KsFqnI22lgpmiO
Rq8xGbdQn6cix28Bi75sGn3w3pUsBpuKduPnq3uHafS1AYPejr+paD5uTp7e
RKPP31xW2NtMRQHGLw5cT6TRK5InTYWTqMj/xUI61w4aXc3Yf/bVDiryRe6a
sk5K9Ph+3n5RZ3GUx3fOJ+3BenrLxYrVPI/EUODdJret9Yp0F7rhH7lGURTx
vcEvekCBXlMY+VCDIYLesnb75R6Sp/dr+9mn2gmjXzW0LUsJa+mhKgs5V19Q
kKxEvp3pHzm6VmpwdMWCAOr/73rvBQdZekCnoprneX70Tvaj4udMafq3R071
8XV8SPzr/hJBqhS9rm7l32i0Cl3ludhoeEOCzkhe2VFXxYuICem47DZx+lOz
pIkzqjyIqTFfzNkrRt/GrXcovYQbTbmmb+paK0L/V0fI9ZsWF1I8/LyxqkqQ
rmxwX1QgchE8JpU2+qavph923XZXkPcvlK+I+hNosJLO6Zg5nX5xFjQ+Bbqb
yKyg7+tkHPYznwaJDevkYgRW0D/qSa1KMpqG6ev0pt4FbvoZ//GIBr1pKNnF
px3Ux03P9tQU26k8DXtzYnjeZHHTR7CZrwXfNFjF5j4T38NNjzry3Mutcgr8
Tw51/nTlopc5ie503D0FXsupKSO2i/j2xafuKogDdPULZdy7F3H9cEnzJ10O
SJww6pZbv4gvC09knfmHA+XVw7LmYwt4gmtHY5kSB8QjVGLzri1gls1pgcyV
HCiWeH83KPMv/rFLR/NWIxtWKdcGUObncEp0K+eGMxscHBLiN/bMYVXD4NF2
Oza8jfQs1K+ew1pL1kWqlmywn6RwzkXN4Z1Jqf1/DNnwpsDSt01pDleUSrbm
bWWDNXS5pRyYxVtLWulHp1mQZj1xRD15Gm971eOuFsOC63etbkmHT+NzVT/z
XkaxwLmy+MOS5zRmbX93knaHBbLqYRuadKdx5LDYStVgFkQLykyfaZ3CPJ7R
wSGnWRBcaZDwXHAKC+lZmPyjzwJ79dgeqSA23n8pveDDOBN0PeapSy5sXCds
rT44wgSplOOmQyZs/DDM/pj4IBNaBJXz3kmS7zMaPlzrZILp7/LQw3ks3Dwc
uJDyiQk6KSMbI0aYWCA6X5eZxgRxym7vRVsCl/Q9iGE5MSE6RSbpkx6BaxlU
lSvHmCD8z1TDA0UCf01KLKbYkP977Wh3sHUSV21cX7n3IBNWI4P25PkJPJko
/2WFHhP+eAi0IpNxnPD3XnurLBNGIqs020TH8f2YIaJZkglDeVcenen8g72L
fTd9EWPCr78TRx6e/YMPGReN/eZnwpf731oGHo3hNsckubPzBBQUJX2+2cvA
/msFuj53E/C220ZtTRYDjxv3Pt/9g4A33CL3cy8wcMGer5lv2wh4eSDE4vsq
BsbRDT45zQQ87nFr2qo6gkMyEhW5Kwi4wqfW0Bg4jBWLVEt5MwgwtKuoEacO
YN/D1lIPAgg4civN0rC3H5t+c6+WvEiAS1FY94U3/fjds0ni2QXye2ljVqtJ
P158ql5f70PA+476dfFX+vC3kuMp3m4EWLzNZOg09mCsx9XAsCLAU9RrOd69
B/Os2j7abknArXOqknNcPbjpbnpC/SGCjPd89EH7F74w5P/m4wECNPI+xMPT
bizSqlktYESAVH7zPtPzP/BQxcnrLdrkc/EHDq8oP/ATtbdSW7QIOHTeyk8g
4ztuZCwcuKFBwG2N70mNXR3YYKgtzkqNgPn8Pvbhfe34H8XbVbCVbI+azp/f
04Y7wyc9GjYToHnBXYEa1IZ3p1zPc9pEgLfmmFlbTismpGZ04mgE/HrHST0m
8w2XprnI28mT7VGLikryv+KmEbtl6XUESPsHNq0x/4o9zL5G9Kwh4LDW0uzP
kBa8rqH8eagsAeFnRJ5Vt3/GP2SrxmUkCSjbGtNwU/AzdonW0RSRIGCaITNj
ippx7KaCzRQqAac9lSyaXjXi+2ZfFeTECDjopb3QdqUOz9py2d8UIkBwRGgw
9n0tNhCMgkIKAfWnhhtsJj7hVtrm2D+CBJg6xye2Ha/BVNrSA28BAvi6fMNi
H3/EV1OmdhbyE1BjZ+pl01KNPV96Wa0ibWQ5t6ttbxWOPLeh+z8+AniaW5Ri
L1di4798B9eRrjTLErApqMABadnbb60iABk5dLZupONNWUfMfVYSsBTiEb61
rBzHT/28M8ZLwNXLMtavtpfhMI2du3xJB/kEsTPFSnClhPnMHR4CZj1UqraE
FeMvxf6860lfdO1+mMkpxJQDZjfLVxDAsb93Yov7e8y4unjlBOnz1voamR3v
8NXBkhEKacJ8knvL/nyswcquK+MmwMfkWUtGyVscOj+t8C/p7yFpew8dzcG5
6nhMg3SbP2+/hV42jszYoDrDRUCLh3uIhXwmNrQ0Gqwg3WRfq2jB/QIrLO8Q
e0S6zlyZbj6Yik+7ShV4kr4bIoOfRCVjDT52oynpcI/uxQTreGzs/MtBlfQV
82e7E+Qe4Pn8IRcZ0iPutdPqFTewkjq1m5/0W7dnI85PzuPFX2ebuEmX8iO/
aJ1jsDFjTouLdJQnWp+hfQ3uWRSJryRte0aG2iYcCcGB6e6ipN9Z1Jp5GcTA
k6wP6kqkS07zUrwvP4GhvZxzu0i7GjxzL7R/Bh0hezcfI+1mof+p8NJz8L0R
bxVM+oxD9+aimJdwwKxv6hVp79NBt4vyXkFttoBwN+lz/8owippfw5ZTfxMl
yPHyDy3cXzyWC6WUx0+tSJeaKNs4hueBqHylTAJpfYvAG93i72ADYcc3RJpu
XfveMbUAXpRoee0g56fa1V3KqbwIgi8pPpwkbXz6vfHPg//BwM52axtyvmt9
eC85dZXA2VjFyArSjZfTOpxmy2DriRS7N2S8WIQy+X7dxHD/9fGxbWR8nTZS
XJsbQYd9hi2sfNKjZr4H1WQrIbyy3OErGY8qzXGnfHsroSwht9SLjFdvy/Ir
uRlVEJW4K1pwNQETdkJv1HQ+wlD98D1nMt6Zp7KF1K1q4XTN8U5LMn+2C8qY
HVWpg4Djey6qk/nlmRd+8zpPPRiFeb+QEiZgcNFp+cu7BthZn/thToSMrzhR
pp/EZ8joOFssR+av5J6rqk/+fIathgk92mR+v2JytFxPfIE86duxR6UIGI53
9buzqwXGFGWyC2TIejq4a/TH6Fcwqhw/84msH8E7/FZP2H6DQdDnyCsQkByR
sWlF1TdwjivgC1YkoFNd4qRyYit4rebUHCHrkfXV8a6gA+1gs2fhvi1Zz0yl
njWtef0DFuYCb9foEOB+pn1MTaYTdtqO6cfpEnCjlCJgFN4JX+c2nDu7i8zn
E4HG3o5dEO1fp6+hT8Du3CO4lPITDImfPpLGBMikh37P0emFV5Qt6wzsCMho
Sv5d7N0LwlHSf28dI0Bnpni6Mq0XuvIcDdodCLAxm5ToEO4DlWzMfceFgIeE
g+XycB+4WLK3mXgSQNmjXX8ofgA2u76c3XCNgAiHLTlldQOQLJWSkx9C1qeg
NQ9VFgbA7Z+kauNwAlYUcdvzuQ6C7K93gqF3yHqh3swoVx6Cx81j/UYx5Hxs
8ODfXj4MEpZSD+azCPhASTClDDGAr2qN7tqfBOiqRG4Lkh4FNze9Ixd6CSjc
f010ZP8o9AYcf/plgMzHm27fq3JGIVfrRGPyKLlecmmcvhwwBht3XTcKnSX7
z6m/NSo4DgoxlvrnyfVa2yf45CmyjiNxD9d+Kya0pnLZF5PrTtk3eYb1USac
bws9TDlMmsW81OzIhJzdt/YU3CT79dw2td2NCZsEo6V5OQQodbr37Apggkxm
asPzZiZMaBzsO5zChIW+as2BMDaYdRxRSZ1kwhNJE+UdT9lQRpv8MMkh9zv7
6xTvlrAh0DGGe988E/592ySkyWRDiR1vKs9KFkwEt/8OdeZAX+vugS9yLOhd
M5KotHMKMuQteF6ZsKDaRpD3xMQ0pEl+eK33kgVfxXgMdfhnYGh9UKH+axb0
NM2HCGyYgdC0G79M8lkwv290Of/YDHibrgv2LmeBuk7dX56PM/Cv8/bspXYW
JEndYr9InAWrrad0jPjZ4N+xYoBhOg8RXnaRcJ4NtGPzFX7PF+GzdXCehQ0H
MkWcxy6VLoLQ0HSAgSMHttVUSAS3LZLj4Tyme5IDOpp3PCL4liBrTV2Nth8H
TIVkhJ57LUHGpRBRj3sc8K7QPtqquQxV2wfzXtRwoCtG99KaE1yo6oHothBy
/7xx8YJQMIsbZWxeqaWoPQ2Zx5brB2xXokx5vsfiN2dBZKVA+82Q1ej1OSvJ
1yPz4Fz+cVIjSRDFRu0QonotQjJP3JNr88KoCsW+rN/IhXobzteFi4ghm6Dk
2cW73Gi0a4PwkypxVOXxzDRuLQ9yfxQ312QvgZo3h/+9mMiL2ltcvFeNSiLD
3xEjYrKrkL7t+80iidKoT+PaPp1SPiQdWndHR00W2dC0eflM+BGD7aG1fUgO
mb5r9aVPCaCcP87uyo/WIh/hzF8lKRQ0FCkJ+zbII99IYa+wbcJI4oKti3qH
AkpPYLX2dYsgh+sqEsmFikhq6XvK02JR9FLgu1761fWotWwFErsmhsaL6m49
slFCutVzgVG24uiP7prN4go09Ih3qqhSgYpe8pj+ilWiIacf6+330ajIpdk/
VnYTDWW5/V38tImK2k4286xXpaHZS1lmTapUVB4V0qumR0PBa/NnOvSoKHrw
d4K5HQ2dtUQp43ZUpBVdQLlzn4ZeOXZR5KKpaMK+r4ryiIYOik73JD2iosyN
wpej42go6Pf5AoV4Klr3wYMRn0xDn+5HuG5MoaJVw3I1L7NpiHVipkH9NRV9
1wu5Vv2Jhuj8Sz0mtVT0cFWOjmkDDVUqG9XWN1DRwZbO8YZmGhIVa8wz/0xF
Fe5ajt/aaMgxOOG2VTsVZT34rds/QENy+VNGxwep6JSjBOH2m4ZOYokd/eT5
WGGzQQZjlIZyr7oru41RUUzpE0kmk4auFz+R8GJRkcWtT43+UzQU+CBQcGKK
ilYf4YTNztKQXWsYj98cFVWuXa93ZYGGNhUWLbAXqOj/zu/o/8/v/wNXv+Lo
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0.8},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{-10, 10}, {1.0000001973480235`, 5.000453815995256}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.6654819564757624`*^9, {3.665482002573843*^9, 3.66548201210546*^9}}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["N\[UAcute]meros de Bernoulli", "Section",
CellChangeTimes->{{3.665485576635375*^9, 3.6654855850113916`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"BernoulliB", "[", "2", "]"}]], "Input",
CellChangeTimes->{{3.6654859551186028`*^9, 3.6654859707830305`*^9}}],
Cell[BoxData[
FractionBox["1", "6"]], "Output",
CellChangeTimes->{3.665485973809436*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"BernoulliB", "[", "k", "]"}], ",",
RowBox[{"{",
RowBox[{"k", ",", "0", ",", "13"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6654859854510565`*^9, 3.6654860474353666`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{"-",
FractionBox["1", "2"]}], ",",
FractionBox["1", "6"], ",", "0", ",",
RowBox[{"-",
FractionBox["1", "30"]}], ",", "0", ",",
FractionBox["1", "42"], ",", "0", ",",
RowBox[{"-",
FractionBox["1", "30"]}], ",", "0", ",",
FractionBox["5", "66"], ",", "0", ",",
RowBox[{"-",
FractionBox["691", "2730"]}], ",", "0"}], "}"}]], "Output",
CellChangeTimes->{{3.665486040930155*^9, 3.6654860521621747`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"BernoulliB", "[",
RowBox[{"-", "1"}], "]"}]], "Input",
CellChangeTimes->{{3.6654860698420057`*^9, 3.6654860787028217`*^9}}],
Cell[BoxData[
RowBox[{
StyleBox[
RowBox[{"BernoulliB", "::", "intnm"}], "MessageName"], ":",
" ", "\<\"Non-negative machine-sized integer expected at position \
\[NoBreak]\\!\\(1\\)\[NoBreak] in \
\[NoBreak]\\!\\(BernoulliB[\\(\\(-1\\)\\)]\\)\[NoBreak]. \
\\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", ButtonStyle->\\\"Link\\\", \
ButtonFrame->None, ButtonData:>\\\"paclet:ref/message/General/intnm\\\", \
ButtonNote -> \\\"BernoulliB::intnm\\\"]\\)\"\>"}]], "Message", "MSG",
CellChangeTimes->{3.665486081136426*^9}],
Cell[BoxData[
RowBox[{"BernoulliB", "[",
RowBox[{"-", "1"}], "]"}]], "Output",
CellChangeTimes->{3.665486081136426*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["S\[EAcute]rie de pot\[EHat]ncias de ln[\[CapitalGamma](z+1)] ", \
"Section",
CellChangeTimes->{{3.6659264448458476`*^9, 3.6659265077256327`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"Gamma", "[",
RowBox[{"z", "+", "1"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",", "6"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.66592652572323*^9, 3.665926558963311*^9}, {
3.6659266494877186`*^9, 3.6659266647567453`*^9}}],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{"-",
RowBox[{"EulerGamma", " ", "z"}]}], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[Pi]", "2"], " ",
SuperscriptBox["z", "2"]}], "12"], "+",
RowBox[{
FractionBox["1", "6"], " ",
RowBox[{"PolyGamma", "[",
RowBox[{"2", ",", "1"}], "]"}], " ",
SuperscriptBox["z", "3"]}], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[Pi]", "4"], " ",
SuperscriptBox["z", "4"]}], "360"], "+",
RowBox[{
FractionBox["1", "120"], " ",
RowBox[{"PolyGamma", "[",
RowBox[{"4", ",", "1"}], "]"}], " ",
SuperscriptBox["z", "5"]}], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[Pi]", "6"], " ",
SuperscriptBox["z", "6"]}], "5670"], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "z", "]"}], "7"],
SeriesData[$CellContext`z, 0, {}, 1, 7, 1],
Editable->False]}],
SeriesData[$CellContext`z,
0, {-EulerGamma, Rational[1, 12] Pi^2, Rational[1, 6] PolyGamma[2, 1],
Rational[1, 360] Pi^4, Rational[1, 120] PolyGamma[4, 1],
Rational[1, 5670] Pi^6}, 1, 7, 1],
Editable->False]], "Output",
CellChangeTimes->{3.665926669604757*^9}]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.665926715963889*^9, 3.665926716491891*^9},
3.6659267755170116`*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"Gamma", "[",
RowBox[{"z", "+", "1"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "10"}], ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6659267806070213`*^9, 3.6659268322171392`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVVHs4FNgblsglK6zrMDPnlC5ukRqX4ldSiaJSbQ0RCpFN68kmWkoiqWhL
ohsGkUrYkobmTTeplEQmFaKl+KmInYrs2T/Oc57v+c4533ve9/0+GhDuGSgv
JycXw9Z/eytRmjs4RuEstSvz7hqSNDdpJVWOUvQSjzBaoY3BkR/FKd8oGs6k
VRbP0IeGce9Tn38ojLYXipQ/G8Bi2Yshyy8U927ojU4yNoRbxG2O/GeKG5eq
hV9VjBCcWTL/+f8pcl136OfDCAk4tbngA8UaRz++9zoucrqTkqO6KW5qcKZ8
b+bipvqOy25dFKODVfzJi3loFfg1GnVQuEjqFDLyeZBtWC7rf83wrSDl47/z
oJNgx731kqJbTV3L24UP62LjhcdeUHiWCC10DvGx4plGcOBziq7QvXFr6vgI
+zqSYttAURqvoBo3jiCZvL+iUk/hW6vXutmQoMClqam1jkJ18sXUabMJ2tMv
8ffcoTieXpRl6kMwWpW5yPMWxU7pKvVH4QScrv0hxjcpzkimCifuJbCdGHFk
+AZFrIP/EuWjBGusfctrKyj67oo935wj+E3o1pL1F8XiXzeF5l8iOLLHZjSs
lCI7uTwu4gZBbb26i2Yxy48XugY1ELwb+ra18/x/+J2eFbcSyHO7067mUdSu
9jomeEfAX9R4NSmHgkirTCb1EzhslbwUnqWItvBSdh4mEP5ZPGZ2imLReO2z
L0cJfq/MMP6RQVGc9z7yjQLjQWn7ttyjFBs3hi9y1aTAH+4HE45QaNvrJIt0
KZ4OmhYEpVBIlu1uTDakaAtRrll6gNW/+NBpHKHob3v32nQ/xZCp5UF1Y6bb
2ttf1eIp8q9NVbw2nULtUbbOx1iK+rmHrn03pTBcGDurIYbCwerY2k4LCtPr
3u7lURS38++u3m5FYT/TPiQ9kiLYbWFnvjXF0jzd/TsjKNwHnEYS51Cs43zJ
FoZTtLyWD9C1oQhKa6iaF8b4TTU//4stReSEkhZuCOOTUz3LzY4iYfehL2OB
FDyfI/8bZPHxgRCNtwEUp/LiulbbU4i2uJjf2UjxKdRDbxuLy94YLy3YQPFj
1/QLziyuWSO/+YCQYnucbFUzu99Q1xYX+guFdFLy+eksbl9QfWr5aop4a38T
e1b/47WsipkrmZ/q4h3VGL4f5lGNGu4UG5K+Wecy/D+J1n4ccKXw2rXceYT9
z8hg9sSmJRQn2yTHDGdRmKVqTK9wppgXcNhmnCXFXMX+hZkLGL/7Bswum1O4
xjz0jXGkGLhnvmkK43P958Jon7kUByp8xf6M7+DgxBPzGQ7XJ34KoUyP319v
KqOsrkNv3JgDpUh/wPvwjvFeE5v2aDGHIm/+iGIte0fqb/lmN9P7r6tSeoG9
o++3fvJeLYpnOceF29i9jX7+joMqFB16EZErecyPlv1D/oqMt8MrjlozXxhN
0Mk/J0ehHq36YFiboijfzDaZ+Y/7qburhfnKqnNxkeAzgXnQXTmxOjvfXG1V
1kvg5rnHLk6Z+e6MjcConSDJdPi80gjBbp6PcsU9ghPZjbffywgOfpjn3S1h
/alb2vZwiKBRnOrUc53gjnyYXtpHArPx/d7eFwjkWjsS9TsJmhKyH4xLIZi0
SpL7rY2gJer9P6XxBLz7p2++ekXwJWRfr1U065fydcPZzQQTFAtjM7cQ7Ep5
HGhSx3CfiN+i5Eww0mfQcZ/hEI151CyxI9jjEbQh6DbBT1ky6RILgkTNMU9R
FUENjZ28X5fgzwyrBdwSgvxPveIrD/nQ+bpbLC4m2NiT2ygr5eOk1wMbr0L2
v6f56pcy+DjHDbDIyGF9KsxRW+bPx0XRMY7mcQIDmUFUVx8Plort6SVpBNVu
jft063koCzLX9DhMcP/V0pgjl3moNLmrlJJIYBEz5in4lYd7JcNfFHYRvO+V
79vbzoWrpvN2USTBabVEHxUxF48iUnudIggKnYwfph7n4plgxtvYrQTRBZl+
gYu4aBMLn8jYnJsTecYsKt0IAdwCtwwvNicrH8MpyAh/xw7cFawj+KpftHmn
wAh9TilVESsJ3p7tC71Sb4hw0QtbTXeWD/s8IfykIQYUjMtLXAnGbibdV/cz
hOx+VVHfQoLVDR5/WPRwEGOiMjVlPtO5h6ywLeTgx8G12SYOBBK5jstzAjmI
78sxrGW823Fn33jC40DRo/9EkICgssK3LPe5AQ6UzNVStCZQXefYNDvRAGqa
SYdFMwmCaxJvfbQ2gNZzfkL7dIIl3XukPdH6SBeEjcUaE0izp9jP0NaHfsb1
aC4leFx/RRyep4fTMoVhMZfN6WW9Yy9M9MD3WvWbF4fg0JBcVm2OLnLFZ/pk
TOfqcN1NJ5R1MY37ITjjZwL1lqQdjet1UBRr0ynQYP7p068dTtaGeXu873M1
gslTEqO3Hv4ZJU5PpBEqBDEcBZ6yixasRYZrNScQdDlmNM/ZoYGrCluelsgT
yMxhM8VVFS3uHRenyRGg6qKkJ1wq+RcGnLEM
"]], LineBox[CompressedData["
1:eJwVVHk01YsWxjNPnfOj/Ibo5qQSL67IFQ/lkqnUeQr1DCnKTaPhVshQIkNI
hlCmDA3GDHG7nS9uEiIkwzNLlJtrKEq94573x157fWvt9X3f3nvtvdb9FNdD
REhIKFgQ/8+f047UvVtmYBvm+PY/B8RMMz9sa48X4MgQG19x/pzJa87Xr71f
GJx5bvNlLPMrT8q5WpUzx0AxYLQQIiIwTvaz8Z5iYFWu8uYFWww+bVt8K98y
iLG7rM03kECh5FwGf4DBD48PnZQblcTA9tJnO7sZSHAVQjx+kgYRcHI6/hUD
XaPVENkvg50Vmkp9Lxg8Ibk541ayCPz4wYRTz+CI83TlM2U5lK2/e8z7MYNm
3ZZX1j1yeOd6NKGyksF1xzM6+hflwdxUq+UXM7Az4iqzFFZgT8fY6M5CBlsN
zhCXbq5AuEyOTEI2g6DawZcdUizU/uym25fGIHcPPy5uOwvTQSrOnBsMyGLV
zBxfFjjV/eHesQwM/aqbUnJZcJxJK668wuAUXTw/2spCjLpTNz9YwK/0QW98
gYWn7kpClucZdMT58GYYNhbSuzYmnGVQLGr5yMaYDY2uxL19xwX4YWCQjgsb
bvLcCxwPBhsaHzj3BrDRFNLaXOnAIHFgaBdZxsZyTcwn/h4G+iV00bdGNnTn
rZUtrRn0814e1B9iw0tTyiLBjMHILgudiXk2bns8P9lnxKC2sUVxnQSBztvh
KZytDBy785xEKQKSPWbw1mJwN9VFJUOdwFlrsJfXMnAYzlYz2Emg4NLFbZYM
Az2dYz3O9gT6HxsdTlBk8NHRzea8GwH2wlJ0nxyD7z2351OOE7DQqqngSDBY
mZjw0zM/AgHHfh3wFmIwJnkoXiaYQGm2nnjVVxo83axU3wgCb/vmNy/P0RjS
69OQiiNAKZY7WP5JI8He17c9SVC/u0tM7B0NrthslE86AcurXx4+HaKReWlS
5XQWgaF6xv1iLw271plzLXcI+PONWYadNE6v2R0eW0hAzsD9yWILjQh16/9W
3ydwxyfcu6KBxvRIU71dMQHD4kL6DGhcjzMxcSol0DHZ3PjPWhrxjxele8oI
eHH+8v/wkEaQ1Oe8tnICQi6EWkERjdA8i31mDwmkpup1Hi6g4W3xbcNWAdbq
dAz9IZvGvr6KpXuC+ga5QK2BNBouzyYu3BHwuVhmDty8QUPLqlVdTaD3Oawu
ev81GpGFSq5aAj8xv48bKETSECp3snkm8Mv5IjnZFkqjK9F6aVLQT62OZnJM
AI1AjUb7jDwCe0/Y/WzlR+PGL2WqI9kEJgvOzomdolH6Nkm25haB4NGkrLpj
NFI4JrfUbhJYpVyzO9idRtPiKrONNwiYX1++92UfjWSbHOHPkYL9tqg6VdrR
GLHQ9n0aRsBXwkLirBUN/Zqcso2BBHICYw5PGdH4cbbeqPkEAYPqEnbhVhpZ
tLqGpCeBV7MdvCPaNLBKa8OYMwG+J7V6kENjwiv5jp8tgaRso6Y0ZRpGAWWq
m80IaPa7nnNQopFz+E7hFQMCB/bmv34lTWPlW+N5Uo3AbPSLsFhRGib0wup/
0wQiG/7UtuZTSE6aITevIFBtuCW2fpaC10RJRMMiG7v99xuGTFHoli1ouTTF
xrvS8++NximM16pGjgyyobge5lU9FFznPQ2D/mDjNGsXv5BHofYmn6sezYaE
zekHHjUU1llqRg0K7u92eOIB1YcUPi74fNTyZqNlqbcqPZ9Cxv7vEbk2bKiP
e566FkuhUliUKBFjA2uilG0iKPit+WqyYV7wHw4UNUuEUugK3lT14zALV9rm
N4T6UghcSj238IiF0ZqQYZ+DFEIc51rFPVg41By66649BZeTqXWfbFkY7g+r
HdxFoT7jarytLgtDy5dvWJlS2JTiq7NJmIV+86uWa9QoNFHxU8brV+CgQ1Sl
vQqFzyqaQbwpefQdi1aNUqJQ0nGos75EHr3Rsd8/SVF4093gt2aLPN60J5Q2
TZMIWTUazFWTw76x68pCkySKCGJu/YAsXn9KjNIbISE92fTb++uy6FRKPpLV
SYJuv1bWvCgDrnpKe1cLiQtyV7Mf5MugY1uqsUwDCTsvpoLPlcEr5zTS/xEJ
UdOZAm6uNOxOpYffLyNR90hTZdFCGq0hGXPD90h4sZtP75mQwsvc2y02twR6
numBqspSsK3MNAhNJuH6yc1PvFwSLQ1Z+VVxJNK7Xxed3SGJpvc5IWvDSKgd
L7HWt5eA1bfcj/sDSAwOmPteey2ORtm8AzG+JIa4V+4e3i0OS5X8509PkFAI
651YhBieaxXoLnoK+BNsLxzVEIPF9sJsTTcSPWHb5jNjRNHAvSvv7kRC2//y
Oe7YP/CH3/3JFhsSA7EanO2/iMAs4sE+EXMSAURyRHeSMOpSi+r0jUn4Ue1K
+kVC2HGvWOuEvmAe5gHHLzss857+VpKRo00i2PBIpOKq//FMX5ZK9agL+jnz
rdr70hIPg2X+chwSQSsWLwyELfJMZsrHdqwmkeExXCQxPs97Ilyx59xKEnnm
Ei+F8qd5/1Ko/L1InsS94YGsLWtHeY/XVW0akyCxLZ2Xl9lWamK0tTqFFCbx
V9fS0Z1HhUyNXX9tVRAiMbuYMzfWRpj+DaC454Y=
"]], LineBox[CompressedData["
1:eJwVknlYzPsXx0dFmka+S6WFK7SIUlrIvfhmSjeESokr0fYIYaYSSZsQ4apR
SWRIhFtp39z6nLp0I2nTNjc1tKi0zJ5C/eb3x3nOc/447/d5Pe+zzOeUq78C
jUaLktf/uySGfqFylgT3DZXbPQLUbfH0s7/5zZAQVa1aGbaZblulz+U9niQh
78ry4S/bp6nA7NdhXwQkGGu/CFz4Q0DpWI1qGY+QUGMfdVklfJCqe0mUHesj
4RpT1avtSDcVarfBI7ubBPpAdclWRiOlX39INtZGQsljh1VbdIuoFtfLyWaN
JMwsGs2v8spFUbxsK3YdCXdsvB+bVdciE5/W1oJqEmbVLNNls82INzwVJKkg
4btgso/e3YGusPWIdUUkFB45FMnX+ojWTTnkn8kh4ejXFZMZQ3zUH33CufwJ
CVqiN3k8Rh/izE+amOaSEMpUbNOcM4BsEyr+3HiHhKkZf8Pi+kE0tuiTaSSH
BKNAA61u9hBK4yo3oGskjOXU7X49OYwcjdYEzrlEwpEw38Xiw19R5rrw5xfP
kHDva+uSoKEx5Fr1cFsti4Srm2qV/FUnEM2hbkj5GAmmse6c2AUClNswHrfN
l4TwTYdCz14XIE93DaNrniRsL91+1k5RiOgff6t9507CwYxC/ZggISrz8/FX
203CiZ2af73kCREZ8uJR4hYSAiZcjJVSRQi+tzFbfyUhpHgr7dOYCJ2M/fFJ
3YqEOYZa7Qc2i9Fi1RUxe01J2EXfU/DPVTF6y9mml2pIgkA3d+7hJjE6q8NC
XUtJCDNbncImJMgwI8VLV5sE0DdwtHSWoAv5fffuq5JwbkRqfAdJkPkG+ka+
EglNK7Rd7wolqAfM/1s2Q8D5gdZzdD0puu7occ53koD+kOCrjB1StKEpQvux
gIC7a6v9XgVJ0aBHZtngMAEGSh2bXW9LUVLvW4+VfQTcKmC0t5ZJEfOIUHa0
m4CVnpty/TqkSDC+KOWvNgKKLNl2v4iliHb2UcXhRgKyQ//mx9BlCJtj1qvx
hoATGV7AWSpDevEVivU1BPAv1N/wtpAhc9JhZfTfBHA6+byfTBmyvdfsZF0i
19981CrURYacDQ6yR14QEOyYYdV5UIYO5w4lc58RsKnl5y3zABlirQ+pcHtE
gMP63TbXWDIUDbM9KukEBOjeZIpDZShh2zVFlEJA38IDusHhMvSgRXNlSAIB
Q50ukeqRMpR3IMPJOJ6AmuVHL/LlM/SbsntiCdinsjenN0KGmk6UJ9+KIGAV
75chbfk+X2Zf4XiGgJTe4bQUub4gqqnnJ4sAsyqd555yf5qKp2LhMQKOjTdE
BsnvwzhfjAL8CHivC4weLzm/brDTEi8Cop/kdGTukfNnzrBaPAi4bGD9rd5B
zm8anxznQkB1goPePhs5f4lGxcYdBGRlGnF3rpTzUw97hPYEKOto+Odpyvnr
TBSzNhNgcjJu3kVFOb9LmZGnDQE3zJah+nEpSuDZOeEWBNxTcwqJ75SivNE/
ksMNCFiWHFYXmiVFcHqw3Hyp3P8JN+XpdSlqmmH3DGgRUDnCr9nPkueLXTVy
ZhDA+xa1nrKU55um7jR3HgFsg2zmaUKKsBUPWBWzOISW9lusEcj/z7q0XF+M
wwLWpYXGWRJkW8Xs6RrF4UBE15Fj0RLk/Pt7hZuDOChnpp033SdBrP0DO6a6
cLD1zQq1UpSg6M8sVm4rDjap4UdPt4tRwvEfSb4NONDWR621eCpGeRFkTwPg
kCa1EWv8LkaCh1tYGVk4YKW0FxZBIkRb3ZDk8RAHeze8nbZBhLCifeWMuzjY
JabsN5sRIvPaUwpn/sQh6Sk7IzVWiFgj6Uk7TuOgdiO1XhgmQNHBxuW0Uzjo
XIpU1LUUoIQfRR+LA3BgsIWpHz9MoDy1d4Z6njjEV/X1f3oyjoQW02USpvy+
mCLyuO4oGuH43lu+EYfij8Wf9x/6ij6L3kU5W+Og6hQo1Lk/gloKuA7ZRjhM
zytSZakOowKLrR98GTgYVPdiax4MoOec3NLEuTi4+HyLiyvuRxmiRXfRDAY8
pzsmKq/60K2CEW9dIQZd/lbNrvWfUIhFwkRLGwbiWpu8eSIeCuRMtdAaMQhi
v3S7eLcT+Yl8StbUYeD9bDW8N29HbgXWEfEVGHzY6/m6VrsZORHcw2WFGHTo
2LPN294h+6D59oPZGLAr8+mDzH+RtcV/dCYXA+7B6ZrPAyVoDcd+/FQqBmrp
Nty3eZnIUJTTnJ6IgUmmBnP5gsuUZkF06lQsBjELf6TFNVZRasRIuFEEBozJ
tUxXYS01L2jPIfdQDBKvLLHi899TsrWGhvkBGFQu2H9zHd5JjSfeVOn1xmDx
83zFg2+6qUHht1HGAQzUEy6p1wzzqR4Xn6Zf3TCYf6e+mHG/j2rPry8M2ImB
4c+6b/uuDlLvcevbKQ5yva2FGWnFw1Qt+/65VxQGq4OVljWZjVFVzcpeIhsM
ECNybsFFAVW6lr1FzwIDOqH00CZHROUl8vR3rcbgeI6bQtdyKfVUaDf/vD4G
u/6dvDUyO0k9cMn5+mwJBo5OJrPUqe9Uar5mY4cmBr57ByO5lbNUAh5dMBfD
wC0zw+nyawXbK+zhZEsVDFRuL341u1XZNrrZNcxbAYNxdnlBJ4nbbjspeuRO
w2Bar2+VaELL9n/GlBX0
"]], LineBox[CompressedData["
1:eJwVlXs0lQkXxt9zzvuet+SSW3zJlEsqCkUnkvab6yRyL3KJJkYkTRqiRkVk
qu8ol5Ji0Ci3UIp00SYiVNOFhNCFmnOOXA9Oos/3x157/dZ69vOs9fyzNXaF
uQSwCYKInZ3/7+iI5un2HzR695somGZrMG6lf7u7j9F4yMUoL0koz+R61R57
0k/j9L5ujYdVMswg3Vtk/naW/8o6v2abFLPh1nTbjWYarzuW5lVO08wpPzW2
TjWNLSfirUqNuMwbadNVGWU0WrMy9CJqSUa7apuH7BUayZJVzj/+y2EOBByM
i02jMWrG6v2jeDbzUD65ZPwkjVOjFfrGf7EY6erSt8HRNArqfWWWvSKYHcFP
yZ69NPZ/zlJNXEQw1xYIDVx30qium/SQNzgDY7VzvBqcaTyx00Nb7dE0WITp
JJhZ0fin0MnNu+w7JKlZ3Sjl0Th6/J44rnwKuhr8u7RW0Bhsabz0yZNvoHvw
KJ2uRuOWeRen+oYkELkkc420LI0GyW/cJToSUIhqTxwb4WJnPufmZNUE+C0d
Lw/q46K+Vc26MKUJuP5CsafrDRdvi0cvdB4ah591HdfW3+fiim6xv5u3GNLa
9vqZlnKxsm7RZ6JjDD7Enjp9PYeLMGhk0+k7Bn901r9PS+DiQOf2cZ0jo9B0
8qO0VBQX1bae+BUVR0HVmGUSE8LFVlWR/euyEbh5ZgM/0ImLMipbSnS/DQNh
uqOqw4KLfQrJ1T15w+DQF/lp61ou0jvYl0bch+GLefn6dQtn8w3FKz1qh4An
+CegSJqLV9kHSzfHDEHc+a9nF/+gkH/f6XKr+RD8NLjiM/2JQs1m6xwb/iCE
XLJVONJGoYtwdy1oDMId2wDzoUYKndKcq7bf/Qqu2dkp7dcp3Bktn07NDEC2
fXW1fTaFyqE9Prz8Afg62fkvJlPorjLBubd9AMzyJEpr4yks+N0yZ4/0ACQ6
qzAFkbP+Srst1R6LoG3aOEQ9mEK0cy0vOiECrUKX8+e8KTQ9wWMktiKoZvNF
UZso7MOLB5y6hPDPjd81W40pzNXLYmmXCeGDn4+H4XIKqyNLf6k8KYQxOWv+
aTUKxaDlPrFLCNTDlXX9shTKqni0vtgkhAX7lL5tYlOYP7JaiacthOXq3w0y
xSTq+G70V5ISwvqWjwGTX0gMyvRc5DsqAPvDzZdcu0jU87l5jeoVgK9u+YuS
5ySGHpLxmnkugP1vM2ipRyR2tegf2vBIALGJseYBFSSipuOS21UCSF0XHI4F
JHZ0/2nnWy6Aq/3OBWqZJC67aHBPv0wAd9JMeyLOkvigVTSlPstNVhrKL+NI
PEVVuGnP6jtH52xZFUliVFFI/fpZP1Hu0LHEYBJ5snqEV60AZpzbKz76kLjZ
etPuo88EMJ+Foo3OJKZXVEpy3wlAs+yaZoYViWZWB0JrBgVgvDPJQ7yORDKm
XeYNKQQb2Ui+k97s/QqysXeREDwe+NYV/TTbh9/+pV3rhBC81+YbV4FEr+Cl
dg3uQjiipm+4iyJxu63vaHaEEPhNyoEPJjm4vCQvIihDCNlR05dURRz0kd1T
o14jhBvL+16E93Cwq4fwrBEIofZNC/38JQdTHfW93FRE8DrhlrnuYw5uVJU7
2m4jgslPcQW9xRw8wjGcX10iAqnUkB6zbA5es82XLP0sgkWWrsoXUjg4YH6a
fUZzACBH87hDNAelmhvDAnMHwMlJqjI/lIMT+Zkx/f0DsOvHsIjjz8F9+2Pm
HdH/Cgk+NR53bTm4LSe2mtvwFdKlC/jKZhycS8V5yqgOQuG9s3X79Tno0BcW
Yr93EJ79x89wmTIHM1MkQ45yQ6DcNkOnfmBjVqFXDqttCHTi+80HW9mo+DH7
qor0MJgYPwu3e8LGZ9Z+qWyrYfBOzuwhytgoS1M/x1QNw75N8creV9iodf2O
p/bEMBwb2rul8jwbV0+5cpp4I/D31g2VoX+wcW3Jb0G290egYlproHE/G5Ps
S2TN2KPQWDxPS3s3G2sH4qwD7UZBKNXJ77Bjo0NKQ/PV96OwpiEq0FaVjXIs
v8NDq8SgpK2+MFWKjRfmDAd6J4lh/Bg+7f3OQkmZMM9gTAx319Nro9+z8Njt
2MPXGsfh8oXCL49fsbB7873EXJMJiBlzuKz4mIVOXeH5N4snwKIklXO9kIXN
w+6WgzmToD3PpFJymYVF1N2V6VoS4AZ1BtsksbCevnvUqVACTRqaL3vCWfjb
3LCbvMZvUBxTH78ykIWF+hEJi/2mgN8ZZBrlwULhxZCkszNT4JpWmq1gzpr9
R6fWSzlPA2/ExW2nAQuTQ61aNnBnQNVxnC7WYKHY+0Gpc90MdM0xD7PmsvDX
0L4rGw0IpjqgVzN5ksDVlxWebskimOzauLZuAYGBfIsTrYosZveRJvNDzwns
9Y/IPq7MZmzehg7X1RDIs3F5cOkKm1nOk8+Tv0Vg6pozt0w3cBiplFsevlcJ
5M/sS5jq5TCiwe3SRekExi3nlYtSSOaZ/dTDiVMEbjStwuLtFFNWkBVu9QeB
pXMtO4oNuEwy12LZuTACP40ssD23hGYO/tLX8c6fQAfDcLlXhnOYbZjI13Uj
MFTZ0b1rz1zGRH2lRaQNgXNLv8RodUgxC6Ofix+ZEPiuL8Mz9aI0873tQMF8
PQLlM/oXrHoty3QbLfDxUSfQYDy8uX5sPoNnq+YXyhH4tv7f0+JoRSZ3wLtu
nEXgsUkjI+kWNcbtXcLcdILAxVNmnvF2S5j/AXY24oI=
"]], LineBox[CompressedData["
1:eJwVlvc7Ffwfxq2yo2wNdELkUFaien+atCnJiAcpD5UykqKEntCyQhFlFJJZ
nKzztpK9V8re6yBb5Nv3h/u6/4D7el33S8ryxtnLLExMTIN/8/8W3W4Z27Q6
gXGask7JkdJE+OPFCycbJ9Bwlat3dVSQbKgTonVFTGDxI58aRuJ6wjdXLXzL
egJjQku3ZpbyEZ6NPs6cuyYwWzNRzUOXl3CQA80RSwx8ferEJupVbsJ2eUlN
uZiBz9I6bLGLkzA//hRc8oyB+kpJD5VfcJA/yddmjS8wkFJ3rOg/J3ay1CB9
fkKSgSkehrEDzmvJ3ELHZ6+RcdxVT9/B9mINmd78UlD08zje5d2VmlrCRiYP
6jl9vDeOfBxHLSS42ciYNVcj0R7Hqp6zVHszVjL0tEiliX8ct0+Wrb9OZyH9
aW5BNm1jmGVy6rmeHAvp+M04G3h9DBU91yXYizOTNsn4dJndY5gzeqkjMJKJ
tByx2JDDNIZVDuUHT8kxkVq/hrreoFH03mwZNP7mD1R+frrLxXQUKRl6Ph+a
VqDs+5EAHtlRjORQPnpUcAUKKV901bJH8MmbXIE9Cb/hM+11zaOuYeT3MkrS
3roIqT/PK238MIw1ErMJN54vQBIzn1+K4zCWnl2MvrE6D+9PeJxuXTuMCxUz
5dWMOXjZeblKjjqEnOLFfceWZ+AFmwSVPjeI+94wGnb7zECAXOvTs/mDKHXI
UVxLZAYeOx4/6XpuEN9/ELs6vm8a3NiVKirvDCAI5m72+DAFLgpD8haHBpB6
9q6e14kpuKUX9XiWZwCvyphmJDEmwS5c4PiWt/24NnjJREZrEsyVFkpvlPSh
mKJijWrTOBy6UFCyQaAXzW8maTxTGIaz3tF6h7p6UO0tz9jsxyEwp3n9dEzq
QaPHh4m/0hC4iRz91ajdgzJyZTkSWoOQ0VK+OdStGy1be5JVbfuhmP1j/Ldj
3dgo6ayTutQH9bufqSwId+NO/pX6+ad9wAg9c8worQunJ5mX8jN74XRq/LB6
ZSfu6VcIVtjSA7b8V1dDr3Sinbpm8mxON3jfpAotMnViTansc2LSDfk700mO
WgeG1Mw+2hvZBcppOaHw5ic+SI5sZ7XtAOH06iM6Dt8xLSOp9SD5DsobAkwS
eL5jKs24lfauFc44nLPnimtFnsxTXLa8reCj3Pq68kcLWpVc9zXvbYal9O5p
3SPN2P2P83JEfCN0fJqJMhJtwDrhI/7GAbWwJECjZafXo1OwrUiOcC2ION2p
2niqHhMb02uztGpAV/XPQrtHHc60x34LtayChzZ8b4uba1DPP9zGurUMTl5V
W25yK0ND1zLPOeMi4B7i7QvOKEUfnfYCl9eFUG41UHGe8Q2LNSO/ZXcVgI5Z
aHjTPyWYL7eG3cw+Hw7rLWo2HSzCnfc2TgRa5QBrdd3WYNdCjG53T+xenw2F
xz9wnf9cgOu69vrtLv4C5LBJW6N0Pm4ZzxEp3J0Jd+3uTsevz8YXBSwx3YZp
sGC9o2i71xe8ITa9ZV4hFZwtfgbGz2Si9M6lRCPuZHDQ368c3/IJxZXbGoN8
E6DJia3ntFYiNugPi4pPvYXUy2+HzMIc0Otc/6RbxGXI5ST2/upG0FiScHQt
9yl8bkuk4tTcgU1VaU9HnT1+Ol16/OqBF9BIKTotkvMIbUx+ytJevAcVV9f2
WueXeO3fuz60tARQFZr/ah4ajjdviQ7Tqj/C8iOXf0QSIjFXW/78xYdp4NwT
R9XSjcZiiyvCpnQazNYL3tk+FYdH/8042n4yC6IHJdJp2glYasd22/RHNpSz
+C/qhX7AStfoFtOFPHgc2mDbKZWEI8dvnFQSK4QGuu6FsV+puKM6xOpGVyEc
nKg22OKVhtf06G4pcUXgpW/Hw82fjowLvElK6l+h3pDLnir5CaesEnl3niuF
yGe5B0A8AxW5RY8b7igDbe/mJx1hGWib9vDRA9ZymLO6PfpTJBP7VkxXaz9V
QP+QwwkBdhpKxZZrLT6phDVFIlpGd2hodny3i5RVFdBe9kuID9GwNYR/yl6w
BsZ+0YNlc76g0L571LCxGqDG39bzkMjChKkZVQvLWkgLfG9480EWDoRa2Ptq
1kHYiR3RshrZaN6nOfJ9pB6qRsPK49xz8P5uew6GQQNsUZNVMCrLwYjHcTIs
RQ2gGWttXsuXi207BS/JhzfCyyAWNtmgXFzwOu6xn70JZCbC362vzUWRlgdv
zjo2wcEBcfdWzjzUvzf+4+6JZgj07LjF75SHDrWUpee0ZmBrOqv2NDYPAyjG
ojGUFqi8kmK/WJeHqc7+6jS/Fig0idAzXc7D6rIS/YrfLdAhaTSaS6Hj2KYV
h07rVsh7tXJ4sw4duW+qBEw3tMI/QVX6XjZ0lC+ySWH/y7WbjyvzjDcddYTf
Vm38+B18i25sdYqh4xWb5lEl0Tb4OMzzgCOXjv/l8nAdftgGTku/GjLq6BjL
d2i74WQbCFWTsgd9dCy0vHP02sUfML25cfn6DB27MlKsHpT+gEBJnxUPZsRV
jgHPF6o/waDI4WQBN+KWi5ui4t/+BJcnkqY7BRD3ppzFXJ522CZbE9wggmjM
4tte69IOKl/en0kRQ7xzHn/39bVDUtdU8zdRxJfxs2KLuh3w5pX+VSkhxMzf
OzR48zog5CczyV+H2Hja0kBKrhN0ZCdd49cgTke9dFIL7gS9bh7NjkU6+t61
Lotl6oLdiXa+l0fpKBrr2Zqs3gUHIx9dP9hGx7iqiMEv17rgspduh0sJHdXn
v8wVRnfBAodnKU8qHUskG9dUtXZByfIXXpZQOp4/PiHYsq4b3gTEP7zoSsc+
R65t3Ye7gTPzyKKEKR2dIqRVRu92w3XPXwq6e+kYOGmitzrQDewfKTFrpvNQ
Svy2OefmHvgYw6EWWP5330OBNwTO9cBvPT7psDd5WBNS+kwWe+Dilvd68gfz
0Cy/9/Wu2R74t8DUL4svDxnDfxK1dvQCd24ttb4tF3n2qZWfCe0Fez8xuSSb
XHxssj05r6wX7m3977jfrlxkv7sxcMdyL5z7IZh/YT4HWWjMxuwWfaAjTtN+
75aDCzurh+ny/cCzr6TI0y4bnc8UVCmY9kP/waiULulsnL7+OS3Mrx+2a+17
uudHFjI+hN1xnumHZY+qX/2QhX3brDkV6QOgEbW46/oUDS0PGY+HTw5AYcye
xwMvadhpcaqOkzIIvArv5q7vp2FbpMqrfu9ByG9WUU/1ysRaUSa5CL0hcF1o
Njgw/xlzeF7p8PQPw4g2m9D9h2moseOpwl2REbAq8NHu5k3DzGPu/EPHRiDl
Zd+yU3Aqpj663FqUPALpzDNNV/en4Hsm5X9dXUbhiyr6JGgmYuBMufcI9zjI
bpxQsXgSjfwC9KuG+8eBUSBduuZKFD7blXam5OY4bCKNAdr73qKPXahI9N+f
PzwUGGBRFI73hy7FGb1hwE8dt4QZtkBUs7t/yUpsEjYf6uVxDbwMjVFMxl9U
J0HYpShp2MMZHJo8dXl0J+FVu73OHgUPSN7rve/zo0l4Hu2qcVrpGchw+4uw
zUzCnqANy0u/wkA0PqoipnoKDI9lT7N6foDl7mKVXq9p2JYkEnUvNAfChLTl
d7+ZhqYiD7HdT3JB41iZ5JPsaZD+V3JPyIM8uJVaxasyNQ1RR/oJ3ERg3G8e
9DSbgSxnoRGftALo2jgUvnXPLPhO0t0zy79C8XluNsu/XsXQKHb2D6iG+vWs
h9Q552EmUpmeJlUDnVVLHlzb5sFg28ESn/QaWDoysppuNA9Mfq6d8ldrYad6
2W/Wr/MgoHDyCTWoDl4Le0+/C1+AmPOJpHy6AZxaWHqHdZbAp1jFxW22FShG
SwX2MSsw9c6Ty3GuG+L5zEZv565ABEbtTZPqAYWSAsH7fz1Shrlehv9UD6ir
+Fo/Zv8DCck6NUqxPaDDK8obc/UP3B59JjdzrheuFagZNqqsQk+HjaR7Vh/8
eKFxe6MlE5kUtRcQfD0I0iuOvPd/MZOEjjlP1ZxxiDdaLe81WEOemhUHGOyf
A741XM2PPDjIYeUyt8JfK2BG/zqh/Jqb6K82IIiwkgjWkDD3pXVk/MjLIz4D
7KSrwqHsId96EsIspySfzENGfmxbF1a0gYyU+Sa+FlhPrgSFLFYZC5LenGF3
rkIB0lxnfm3tiBDRrCh5Lu4uTPYbZMjyhYsQH89Sx+4XYkTEs8xXXUmMvC3A
3xV+m8jwtLWqYr84+XDBOmS+T4Ikj5ldkQ/aRDT0O9cPREmR/qdCcGTbFrL5
wuue5f0UIuhoYL6zRYJkqt53GuOUJiYPdghGZEoSjmmzhn35MuQ9V6tW7D0p
YlFxe6XQeTsZp5V5B53fSkp+l/YtmciTMY2NshskKMQ1jmULkVMg71l1OoK3
UsiC+6sh010KxLzaKVhMhkK894nruu1RIE2XqlmlqBRC3XZtNvuYAqE/9+hS
0qKQuFaDELBVIP59g69OXaCQyQB/sSuJCkTV/zOPrx+FmF0qspFVpBKGcXcR
TxCFuAwbRxiqU0m89DpX/xAK0Z/zsn28n0o251gPh0ZQCP9vqbqJ01SydkC8
5H0ihfzH/Kmy4AaVtGp5uBd/o5DP3jeveKZRSeDaZHWdCgqxm2XI5GVRycm6
tvGKagq5ftjcfaGASgquqF5saKIQx3UZ8zfrqeRDwKBGTy+FPGWYsNpMU4nV
RcHJy4MUkvH13YP431QiIXsgbniEQnjthIOHWBXJi9wwoakpComoXOtlK6hI
Tnt/q3SapZAD/ecuftykSDjOzngtLFDIzyDLSsY2RVK4SUrLbZlCKiLFGnZR
Fcm9wVO/VlcppKXxn5u31BTJ/wDxZGbI
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{-10, 10}, {-8.612168052980877, 15.104411613176508`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.665926943693799*^9}]
}, Open ]],
Cell[BoxData["\[IndentingNewLine]"], "Input",
CellChangeTimes->{3.665927064532215*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Gamma", "[",
RowBox[{"z", "+", "1"}], "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6659270589006047`*^9, 3.6659271782014155`*^9}, {
3.6659272471947374`*^9, 3.665927261798363*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw9V3lUjt3XLhpIcg+KJokGDRolkvadhJKIXkQZojI0eYgUlTKU0igpojS8
hQbhTSo2TUo8Q3NKc5pLlCR8z++f74+zzrrWOvs6e1/7Omedo+josdNploCA
QDt//G/uq1EQbpmhserEYqYsdD1z5sHiiU987CYhZv1wqwbj6tD1I/8njdV/
fKXCXWWZo4uzp2Mmacy2OnvY/QDF2Nd4//b4RmNs8LKtC3LmMbbhZgJWY3y8
7sCiDEaEsbKQmL1imMbzks+nJpJnMRuFmoSFBmh87t2WZiIuwBi/TpnT3kvj
COtvqMWaGVjl4z6vqIvGS/7VvL5VP0HTYK3E7XYaV8eYFctVT4LS2GzyTCuN
ZjqXooprvoPso4/0jmYatUOMubna34ByjpfSbKDxatGN7EvVX0FM8aj0nFoa
reYEsizvjsGsFi25bg6NCYpOps/URmH61s8l+IHGOamp04schmHcplTxbhWN
OGuL24KKQRgQj1DyrqAxb7u8YNCBAeissFO1LaVRQtlXxVyuH5oDldR13tD4
/sGW2rjpL8BbP6op/orGcO9wkbrvvVA1VaDd95JG61Y/GW3RXnj79LJeaT6N
qS3hpZe0eqDAfbtB0jMas7xFK7WOdUOumsyaC09o1G1Zqjk7rwsyuruN9mbT
yAmSil4m1gVJ93PWr3pEY8P70FU/3Dvh9j4fhsig8ezPoc3KbR0QKWluNpRK
o2vVkZkAuw4I5izY9C6ZxlbJO34ire3gvSlta8AdGn1fLFu2caoNPAU9re1v
02hwNm9HsGYbHCsyslkTS2OkucJNxu0z7NXj7B4Lp7E+ZPjP4IJW2DGcYFcd
SmOPdtYPSc8W2JLhZJ8RTOMepURFmaZPYLjk1+FDgXx/0DFWEiXNoNVUdtTY
n0aQL15av6EZVG5Guiy+QKOpqnH78somkBJTceN40TiXty0z/EsjSJSNeTxm
0ag3ufZ6l18jiAQUsoI9aPR3VmvQkG2EyYkd3sxxGos3lz47cLgBRnJlfeWc
+fVr9xoXizVA78nei1OONFZylJom8uuhvsM3KNeez7ez45qUfD18vLvpapgd
P99Pn8via+ugfA8Zcmw3jbykH+maEXXw/EN6+NIdfD9ghtJn8Tp4HHwqasaK
RulMwYN57FpINTO+2WhBo4nb6JRAbC3cLODGR5rRuPBPtUqMSi2cSZtJFTCk
8ZPGabskxxpo37paNF6fxgzJ/HNpejVgNe5xXFeHxhC4IpUpVANK0LXSUY1G
c93RFzuyeRDZIxc5rczn+/r8Y9UVHsyE7h6PXsaP14nYMXqAB7WNlf+VyNJ4
0CX2+FdJHjD+s6XtF9PoFTMekf2NC4+V1/t+X0ijsE6JdB2PC5dZuaAsQeOh
E643VGO5oC8e9+6qAI03bJeOhq3gwr08jrrCbwoX2unz1hJcELMTu5H/k8Ks
PE3e9ykOdKZdtOkbp7B6edBz1gcOWFvlPw0YpTAjyvCacgEHXo6PSUoPUbjq
l/nG8jQORMPRZosePl9xctvzSxz405No3NlB4Z4kx7ofnhw4EdZwz+czhc26
3c3zD3NgQ5PlkUcNFHK1Rnj3zTiQ7X+5zKyWwj65R/bkag7IqLxSbeFQGJL5
Qm6DGgfGWbpD4lUUGiU5b2aTHDggfdI6rZzCRcmBlstFOVD1OjV3fQmFQ/S4
w9ZpNqx2/kzVv6ZwyYtjUWlf2PBAfLGXexGFeac8jazr2SDx1KZBpIBCqXW3
35qUs8HHLnTt/ecUdrXHD3vms6H3b+kdwzwKTXeb133OZINN+p/f7GwK7S1z
egIT2VBktebQsUcUbnO717Qnmg0rvp16K5BB4Xsd/fy9wWy4Gf9IKT6VwimV
8uoAfzYIMD1XdZMp7Pf4mfX+HBtce5f0VyZS2Db8U8fgFBsaw/ZudUzg62k0
fLLgJBs26kdnTd+iECND8mxd2JDb9H5BTAyFKUvqYmYfZYNcgDBLI5JCMVux
xreH2RCsArUlYRRKit73izjEhu/V3qvtQyi8fMi1yJmPD53Ou/39yv/6O/HT
nL++WnpoOiyQQhn/aq76ETasQWUHZX8KSZJYQDuzIdX54OtiXwpV9EQfzxxn
AzE/XnG3N4XpCTxOjzsbLjzlBY2codCkeTWv+gwb+uzEe6+eorDnxgWdXF82
2Aps2qLgTuHvj063woPYgOn+D/NPUNjZYtjoHMYGzW0F4jtcKOyWbBw3vMWG
29/G3fuOUGjp8ktMMJkNHoyzvrQDhfevbwzxLmBDmMvOvYN2FFoR5rtW8/v1
MNzkYvFuCgULl2ZU1bChu0Wq4vAOCtMaZJPOfmWDoNDsIf1tFFY5u2lXCHBg
icYoIWJJ4duAOA+TuRzYe75i30MzCpu4iW89ZDnglfTU/wJD4X8pU9bqynw/
V9xPtV5PYerYLy0bbQ5US3qPjK+m8N25APeejRxg8lYErlOn8Ee7i5uBFwcc
mhb+O1+VwvVJQsUHAzngIyBY3bacwmVGXJyO4MAz6ybJy/IU7vIIoa4+5sCK
wZDMaoLClqz1cvMGOWBOnf14bz6FHrPWjtT84oDjWsdvnmIUbl8yYSg5nwt3
rxmtlxSi0O7YWSURXS4QSoMchx8kznc6Y1Phx4WVWxsmtL+TSOnccT0fwwVL
VonMrK8kVo6VnM3J4N8HeOdo+gCJ4X57LLNruTBlbzU10kqiBXXaS0OfB5KX
18i/aSaRuF4uq2vFA71HShtiGki0PM9mVTnxwPXnTKghlx9v9zn4TQIP2mOz
FAJKSQxqzPAWFa+B30XxG3e+ITH1wS3jMbUakOm+clzpFYk/ktc8vLSlBmz1
Djx9l0/iCTqB+/BaDbz7KLGZfETiRZt/Y1gStfBE1NP9QRSJERLC0wqmdYAX
t12/HE6i9fqxbLcTdcD5pp7uHEoiMsbpCTfrYKStp1X9CombE5fZpg/WgfqL
/dueepMo8UTHXSatHtZqrT0e60Vin9fHz5N19bAlVerKORaJ4/br9reJNoBz
JLdonSuJpyKaP4y4N0DKsc2apQdJjFK5+OSDZSPkfVbakm7Px6cOybAvN8Jb
21lHg+34/DuXjy3CRmhniu9Y7SKxMeYVnWLUBHLS+vPqNpEY9/K8YCbTDBoR
hGq+GYkrf40EDl9pBiPhkQ3xDIl2zyL2VVY3w96vGT4ORiRamS7uPXvwE8RW
LhnoWUmi4KGPGQsTWiAVZoTfqZO4b8pM5sJwCzx73qT4UJXEjgcOl/s2tAIv
+aaduyKJnN1RSH1vBQkfscrJhSTmx9z4mHGqDeTHvnQ3kvx8nMSitRvaQNO5
TKBQgsQVrMyshwrtYLkzYI3/HBKTXFpYI6HtcE198l/RGQLHq+cx+892wK2k
mpL+KQJLYv/LEnreAelST9reTxCY936QcJvogNJZrosiRwm0Vtd+gr6dUONt
oc8a4sf71xpz33RC54jKdtt+Ak8QQz6Dc7tA4FPH1cVdBMqbHtkUk9QFC2xe
P5huI/DP5JFv1qNdsKTi7quWFgIPJqQVezLdYPx0z2RSPYER5yUW7xzohvOh
H5zUqgh8b6El3HSwF2aGpDsqygn8dO7LirIPvRBg7WzvXEJgo1JNdBF8gavk
350pRQQ+oLrLH+v0wdzTWz+aFvD3Y9ZFKeT2QVhtnEX7cwKfsN8djV7VD9Fx
Oox8Dr/eovjG5G0DIPnzQmHhIwINtRf87egc4L+3KlfvyyDw9NuZYyf8BuG+
vOPKuGQCe03z1/ZXDsEy/+wMg3t8feRFvrz2GYb09unltQkEqu4Js0jWH4HH
KTEy5E0CBZQkZ798PQrawu2xOZEEMgFeWVKWY5DnrEla3yCwbKuaZUzBGBSo
lYmGXiVwaX9u1FDmVzAOJYPUggiUpMzlczTGAYcc/lT48/UMe7ws6Nk4lOdM
fhc6T+A9yYSQ163fwII080zxInCuTldskP93qGZFDJqyCIzc/yJRUmMCttd+
cm53J3CwfF/y/o4J4Bms6PQ7SaA6IxyzN2US/ok74yB/jJ/PXVJMl/UDGqew
sfAogSaDLn0626egrdCOPeVAoPkuRaZs7TQ4yqdbxu0jsKfVVfqX5S/o9Rsv
M9jD94dWXemTUzNwvN3EtHYXgQOW8sNBub9hyDS0iLWDQJlBp50XxP6CR0qD
IbmNr9/8eTpxpgLMuJDS0xwLAmuDX5acWCDIeDl7allvIvD8S7kak6+CzFRF
UebQBgKXrRSplx2YxfiqzVUOBQJd862u5fyezfy5/k+SmjGB3gV7bX11hJnA
oWTZd2sIFP2UeIQOFmGErUduORsQ2H9XNcxr3hwmOMeIEtYj8NdD1eigkrmM
OHntRooWgVypNeF5hfOYCFbNnA0aBL71KYkVny3BULUKl9tVCex+0fqyeTfB
xBq4/vVTIjBG0eR1yiDJLI574SOvSKDbvBYnmxqauTslNFkoT2DBLGJCXV2K
Udhnc2qfDF8/rV1PpmWkmQeFiUNTUgSWBkglFvbLMSryAy5xNF9/q/MDD4UU
mUy/1V0GBN+/VLDY5nQlRrM98ECtOL9/Ke/uq+upMzmm7CbWXP75WBR8xeaT
LqOXIvsPKcL3W7vbn0uD6xiWSXBUvzDx//+9/wPcysqW
"]], LineBox[CompressedData["
1:eJw9l3k01P/3x4fCvGfmPUMoZAlFikhKImmRLZKUpVC2hJAQSSIkZIlUiqjs
8iEmVHrdZClE9iWhhJb3DMZO9PX75/fHPffcc+55nnsf5/nHvdL2nmZO3CQS
qW8l/i+//duhfZnFALaa3uTC4R0QJrwj8PhvBrBa/MJiCWWI6m64GD/EgIe/
94q3eG4GzqOPLJ2vDDA1DHm0R2gjnDpbd36ikwEd5/Yk1TKkoXpTzXDGZwb0
f+47nPFCAhR/V501q2fAnPSrh46mYnC3EL5yVzNgUCJiU+GzdbDs/daqpJIB
52PFmu0ChcFZ/U2HQxkDTn/q+xzwQhCaFyuOCRUzwOTa+YN9qmtgN5R9qs5j
gNKJ0jAdgh/Sw5gGvs8Y4Fn68mNFJgMwg5KaTWkMqH9Vav7jNQ7eePH+znsM
kPdPDUM4DXpbCisjElbmi9WMEEigwMHkAg31aAZoUK7Zdu7FoMA6jzkaxgAv
XseBQpwMQlI52+9fW+kXscKvLPLC1aHM5/r+DHhcXrmRuooXhrOfKsxfZIAa
WFhObuABE/eMzFw3BuSA1Hkrs9XwUuWxtLUTA4TnS2W+JK0CyelHqRQ7Bgio
OvH4jXDDzYoU0deWDND7fm23ry43WB5IFhA/wgB/dmzZv01cALxJtxt1GXDI
tb1YLZMECg0JWNA+BlgnR50UUCLBnbi4cCUNBpyLmfOPCPiHFo7f5upXZcDo
dtEq2exl5CASHRSryIAHHxLvMr8toca+yHltOQY4qYkUiW9eQqlOYROPRRlQ
wb1ONrp9EfFuCb1gKsgAt4CZ1h+7F5EHO/gXCV/xR9/qlOLMBaRzOfDbWRID
KvV2psknz6MczQCbNQt02Bgp1FMuMo8ESJd7qibpsF+h6tatjDn0PdK7RXaU
DpcyQ8b2Vs8iQ2Mv4/ZBOtjnhF9xsJlFJQIeH8N66dD487a04eIMCks5/274
Ex2yXbQCth+aQYTtub3JdXSIp7UlFLCn0QlZp4rD7+iAT+k79T2aRnIFZ4qz
S+nQ+y1ma/iqaRTrZatkWUgHbua6pNTXU2hW7XQuOWdFf9eZ0Ry/KfSh0iLj
/EM6nFb6VbY4NYm2h56QELtLh51fE6oWyyZRyuHjD+pj6TAZK37KLmgSuTWb
JGwNpcMW89bML/RJ1J54BO8LpAOv1Pazb3s5SMvS8FaMLx1Io0Ie93M4iP5N
N4TlQgexPWb3ug04qIijdfG/o3RIxbo1bNMnEFesSEG3Ph201ypZpfhNIDOF
qRGuA3QwLpKz8DOZQJN2+afN1ehQcPFuxAfuCXRoMeJekBIdfgxeTpUcGEdJ
yfatWXIr+z7MUG9/M452fRLVnxehA7mmJUv+6ji66TIdKrOGDgKt8YcKbMZR
96qWSiMqHa63KffZ6IyjgD2RO9KWcLDqGl0Ux8bRm+wZyYPfcRCc+B6zaDyG
8IOtVu5fcIg7W3O3SHoM2fY/T7rbjgM9WhdTnmWjf0JOlJ+1OJh1FXSbZrOR
aZGOrgDgoGK7ZNIbwkbpRuLX91TgoBRCN523YaMDoW3TMfk4XK8Ul2wQY6M7
Ev+pvHyGg+OTM79cFlloqDzKbSAVh4BNforeX1kobGz/t+3xOAwmy2U/yWSh
jigJ8VO3cCgvMK8rj2YhObn5k2GhOAw1vdsocomF6k4XNXb64KAsafE7SZeF
ROai+UgeOFTZJbk8U2Ehl8RzBxTO4RD29LDeN3EWqth2MMjsDA7nhlxcdSks
RKmXLA+0wiF5QyZPwxyBrJ0WOM/McNizu/a++08C5ZM6lZqMcHg7Zk9s7CHQ
EfXbTzdo48AX1WtaW0mg1FaXfgN1HJpnyw9mFROIfeGQ6CUVHHJH65hRWQTS
xjaYP1LAYenD5SLPRwSKe7YYWyODw137Wd9jiQQa3Nf1kb0eB59lwWDFaAKp
fHmxWkQYh6YrmgFLNwgU4he7bz8dhwHttEPvggjUKuB6xZUPh9rdnhwffwLJ
PtdlJpJwkFfSeS/sQyAffenxN/M0wKr8N2V4Eah66O+WEQ4NKhpHSoQ8CCQc
3O3EIGigF+Gs5uFOIGex0vTdwzQIcMxIzncj0Etm3Jez/TTIcf/OqV+p+Y65
rY3uosEtYjmyfqXfkjh8rPQzDeIfmKGcFb3cmzIxXz/SoGVLk7TjRQItyCzX
8r6ngXjiurOLK/MYvu3hUnlDg81rXh+7EECgh1ZMLSsmDdrt3f+UXyMQMRV/
ObRwRf+Uhf7XMAJpxbu/yM+mwQmH4Gc9Kzxub9VntafTQHGrks3zFV79tbKb
lx/QYIO867jFCk9B0ndTvUQadGxTeZGXSSB9jfSA+BgakMS6WQ3/ESjI2/ZJ
TzgN9EMlQl+/ItCLfPEGmWAajKiVuQbUEmj0R++kmz8NWlvXAk8bgcQlH4gz
L9JAtkq17MwggSLihT30HGnAryhI3Fgi0OuPbcnxNjTgW80tbYyz0Dj3HdRz
kgbJ/b3DIxIsZO1LF3A3oMF/GccPxO1nobjCRg3mARo8E8srfmzOQtWjUfbL
mjRwHw88E+bCQkrWfKXx21b489TbN99hIfvEmr4eeRpo6jZ47c5loeTGGzyy
0jSo0YcdgcBCpH0kC6YgDc4ntsckTbDQTv+3wcs0GgiMKtd5UNnItfhqjh7v
Su1b/E9Bjo3aZefne+aoYGrfz3XElo0wmzIZWQ4VqqI3O5UFspF2sq+R+x8q
iEZ9W6ClsFEOmfNo+SsVJMWmzEN62Ogq6/c+2fdUmLcYthp0GEPFcrku7m+o
YDMpTWZHjqERu3MJTCYVflzKf7pcOIZMW4e+6+VQwWsrrUp9eQzJlvWFu9+m
wtJy69635uPIcjylkBlBhStDQi9vuY2jGAWrruVgKnRmK7NHQ8fRzMOOzQne
VCjXNJ5zLhlH9debGpgWVDhCvZNZuX4C/auImVo2pUIWNS/XXX0CqU0aSugb
UqHhVvNwzfEJlOZU59GrRQWSyan5sNgJ5G0IAv+kqaAVZfwujcZB2Teu7dFf
T4UyW4kffNs4qO+NlkOCEBVakd3nPaYcdFi5olSWjwpyY4/q+O9xkKjQCwt9
ggJP6gzbKcqTqMikg4dnhALbbBqd75hPIv1bcyXvBiig0NW2i31lEvkta/Nr
tlEgwCJurXr9JGr92fBB6RUFOvfOeedcmkLnZcf8fpdQIDU7/4xb+hQi2a7Z
lP2cAhJzMuMqTVNIuc0yZEMGBQzsIHJAcRrFVA5rCEZSQNQsXOnh7DSSnSP/
bA6hwDtFLvoBpRn0SlUxOSaQAq/zFI9vcZxBP7O9OTyeFLhkovXmR8cM0r3z
L2/uBAXGCiJDpepnUV+jjBXzKAXahH0fsyhzyIfvMJ+3AQVu/hZ9ftx4Dj25
GuPwR4sCVHFRHfGuObTsLCreL0sBqzRitSppAd3N0KpPkaCATxp8NTm6gBT7
7Pwt1lEgwkaUCEpfQNbHsto/UygwVymoaWuwiMo0d9x+P4EBZx6z9yj7i0z8
Tmpe/4NB76vSXbaiS2ikKOCX1jAGS8I7tNdcW0JCcqD7shsDqYQaQXXTZeTF
b7ycgzAYONb03gMnAZ+RV4FTBQbyRO2MvBEJ0sITrWVKMBjclVn6MYoEjQs9
Lx9mYXCBz++xBD8XOOxccrRMx2DXV8cryye4YMFzg6BwCgb+FW6em9K4QGHY
2TP2Nga5UtUvSnZyA0hFSRjdxEDXGLt4MnzlHrN+3sAXgkFzepf3yy5uiGie
lA/xwWA8vbhVM3wVfK+4PnjpFAZzRvVq9Xw8cLYhxDjXHIM4fkp41xUeGOwL
fdVvjEGOujyljsMDA//Ckgx0MFgX/FgpmsMLtgIRXMEaGLReXm/CH8gH/TI3
PUpVMVglflC5FyNDn+4tfalNGHQasn8uaGJwyiKKaS6JQZZMU5rR4ApHl2iZ
qHUYaAvec+iKoUBP9O2/UxgG12SZoXJcNLBMjT2/ZRUGTd/zvSzqadBdGNdp
95cMdhSnjU/TcOhsSSiqZ5NBam23wEl3BpwYuiNB+kkGPeUNpOkd/NA+lRi1
8xsZ7kmVWAZV8IM5791Z114ynDTTkQvSE4C2dcmO6W1k2KzTvK+mXwDMFO61
dDSSweDsUZUD19dA65772tRaMuxMTpwhKQnCZ5sUEb9yMuSKmq/Xfi4ERz0f
hucXkyHjdIthyQ1haLr+iDOYRwbHqQFjN7e1YHIn1W7tMzLw/fgjHO28Dj49
TWs0SiVDsJmqY/JlETjCfKwRkkyGB0Z/lMIzRKGxNj3rZRwZVEVlBQZGxcCo
O0OQiCTDGlXr6X4Tcaj/9eS6dCgZFEOE2zO+SIDB4lPWyUAyLHA2zjgmScEH
WqZ1jA8Z0ojqeXfYAPqSWXXvLpDB+JDzxJEOaahTzlabdSaDjGsPfYguC4f3
52QoniGDk2d1wozPRqg1y6XbW5HBwTf7V77Aipkd8wLvmZFB915ARBBHHqp9
8382GpHhxqprrq8UtsDBmwUnuHXJMEQEZIx8VoSq+8+r1LXJ4FWZt/4Erwoc
yCtUvqBOBs4bDa1WTBXeG1YbKaiR//9f+x8HLxIB
"]], LineBox[CompressedData["
1:eJw9l2dYz+37xz/fz2zRt62BIk3SUFTkbEuhOxQpaaC7UEJZqURSblpaJKmM
MhpGRd/O7oaGlGSlQlZCE92U/L7/J/8H13Edrwfv83hf7/dxPrjUfIJcNpME
QbwQnv+7I8ypnH1dHDYFTIO6+CWwKLtyzvrnHA4mRy+dWGEGd4oESScfcZi5
aZmNVKwJmPxb9aemicN9ukVFbWVGcPsxbvtZw2HGbef6qBMGYPy++oVeJYd+
FZrc5wvz4eaPf+38bnP43M9akN82FxaI1JZm3ODQ5YpketFeHShVrFNtvcyh
50XpfWGHtCBlrq7M3gscerxaObGnTwNClyYyamc53HHLY9IkZg64uYyNNZ7m
8A65Qyx0pTos2uzZH3KKw8IbnhaM2WxQ2lvTpXycw8an3dUW1rNgPE67tfYw
h8VZ0cdzNqtBV9ap6u0HOXQvmGiKy1IFQdH3UvlQDqcrhbYwbTPhfM2Gi1VB
HPaP/06Zf3QGRD2tTvf/m8Ngx2uXo1yng88nzXgpXw6NxtdLJIMK2Ez8E17h
waH/5S1eh0EZNCS/Bfm6crgq/NCRrtVKwM1y95Fw5lA1hV8bu1cRmuw17Dda
czg/UCa+e0ABrrqfMOWWcFhrcM8uc4kC/LN9RLfIhMPFj+eYVaXJw47IdTPW
63No9uT3QcsJOXBOFvBJHQ7LeaNNxgFyYHhRnSqczeHT9A0/ml/Lgkx53PfV
04V93Nw+w9FLFp72uHbm8zm8aDzZfXinDJQN33uwUkzYr2yJkjotAxn07Kox
isNN1IddB85Kg4fOYK7DGIvGSy6tLuiSAosla1NHhlgcDVq/tDFaCmY63409
089i2eD0JzrzpaB3z7HtX7tZbLH1Gc1I5ENt7Fev1GcsqvxoLtRaxof8M6td
lj5isV/Aao3z+OBfPXNhYi2LKwfq8+x/T4XlHUe1zQQsvj5GqsDhqaD78bPy
2zssUoWSza4SU2FAoowwLmTxVnDNYoHeFGibOWO0O4/FZ8MzvsbXS0Cx4ZH3
MedYJOqmCYJ9JGD3Ouem54ksat+3lC/IF4dfuX3JB/ey2G1en1y/Rgy6bq+M
mRPCYoeWt6KSiBhUNt7c+zCQxUSfV026AlGIHIz0VPVisfeX8b4phqLgQ35c
1biOxdg5yeJ5gyJgLbfCKsSFxfktsteP3hAB1lxRs9aWRXOtNOVGYxHoWxGh
uH0pK+zT7OXvcQ4aN70XlzdlUVWlz2d2LQcnYoqHts4V+tV8+mt0PQfS7Q4V
4jIslhftfd+YwcLzw0mZHRIshtWmS4TuYOGc0cv9WSyLmS6CxGgbFrRPbzOf
/4vBtYOlguRvDAzY3lL+b5RBv5OW7pEPGeG+/R7HrwxGHLPSuXCFAVh36p7L
GwY7vlgNbPRlgBV9flb5JYNb+27f/2jJQHO5avi7DgZj9pQlR6kx4KpcsiS0
gcFvF1bYNrylYXtPhyDjBoP9vI4jz3bRYHhqerbPFQbbHeqTldxp+G/plgjd
XAYNpsvfXGhJw5GcsaWVqQymEOoG/VI0LHcB1ZgEBs2+M7p7ximQpI4Tq+IY
lNa7F1D3noJMP6Xq1+EM9rSpuOfeo2CTnG/OlTAGhycXu2ldoUCjvjAqZCeD
VoUn9b1TKSjWXGJFb2ZwVMd96qsQChr6vWo0nRj8Zep78rIRBSfPXM4dsmVw
b+u4pf8cClY7DUeXLxXyqv4xVKCg59phG0cjBt9vcks1nCQhb2Ozuuw8Bh8N
iGyyGyEhQFKW6dZgcKqu/pe+DyR8D86v26HEoJs1WD16REKF2kD+QlkG+aOL
G6QbSIhsN4khpjKYc5M51ikgwS46Yksjx6C2wbEMjdskSCxosEviMejPTzT4
fo2E9nd8zQ3jNH57JJ9mc5GEtNPrOfXvNF5UPqApk03CrLH++7f6aDQIPJev
mURC3yWjy4d6adxpdLA04AQJ19cdjLXvonFZ/QpdzWMk7Bat8+c/pdEzZ+2D
DYdJMK2Y4vCilUYXy8at3CESJgNctS800mgUvu611n4SapWzRQNraGz5ele7
KpSEuAcfPxlV0iiQWr6scRcJzuH6TRO3abR7l+Rst5MEeb19BXVFNNbn8LYa
B5Hwsqc67mQBjWn7jlSd3k7C+VNigW55NLoOm2Zt2UbCFljtqHpOOL96tsul
QBLmDp/R/ZRGY8LPHgs3IY/kvBMvSaRxobF3+x4hl7nM+7I/nsatWHGcFOrD
qdAH1kdp3BHaPTghZJ34s4FHD9FYY5C3MHYHCc+la8Tuh9HI2lqUJgeTEJP5
6YrIThontSlqptD/gll8h+UBNJp2RbzQFr6v94pJX7wvjfb9VuOl+0hIMPA8
1uJB43XxGxaV4SRYlEdrSLrS+FCuI95WmN8XKKhzXkXjLL2VXU7CfDMb2vyS
ltF4Q0XX/LEw/2XOY1SHJY178p/UPhf28+PZ9Fw5cxorH7OXPDNIyPWysXJb
QCOpUanqc16Y58eAN+nzaPxxwvTwh0vCPnYkRnZq0PjMiJz3+QYJ7od6BJ6K
NDYoqpuHVZMgwjIbs6VpLItaUfaniYTb/+j+fi1OY8jGxBKxJyRIZe0195uk
0M0zRqawnwSBenZn/hiF5alhalY/SNh2tW7fxyEKUy03jW8khftxV7os4C2F
MWaBOnoqFIRam7pd7aJw590pFb3aFKg3e/34+oTClUEm8WqLKIjovLpgZwOF
VdRBc2tXCkx+2hWHXaNwv7KDFWRQ8C5yu3P5RQqHM7LvBxVSkCSSMvgrW6if
98ncREDBV4U38w4lUTgvedenU8L9zjM5UHAkjEI7nYbgUnMaXAQ5DvXBFL44
8Xf/UxcaCLuGPi6Awl5Y0ZobQIPHWjnNeA8K72/uVbY9S4PM7hu5iZZCnidh
Oc4xgONPrB6bUTgZHtQhUGdgR/TEG9kFFEZLVaTYWjHQlOSgmq4h9BdVonA1
goHDxW/PnhOnsHVZfJALzYK+qdji1zSF5neP3MnVZKEH9V+qTZK457NC2EtH
FkzbwhXzh0h8/dk8RiaNhaEBhdTCJyT+vVXBys6UA2JvbsWmVhLNJthrh7w5
4PPmv5JrJDEkcobflTgO9GXstCLvkag3/8vCr684CF64u2JNLokvLj2We50q
ApH4p0c0i0RHb9tpG+6LQIJDPFWVSmLGdatHv/8TgaINF5y040h8+63Hr9NL
FIYi2np+B5M4tqGttXexGBCiHlRpAIlO/960OREmBvykj5r+fiQeHVQpuFgq
Bvp5k8HtbkL9X93p7vriENwwl7pkQeKfhWu1pJZIQORfZZoei0i0mWvvnnhE
AhI6rZ2kDEm0z+3u72uRgKIv7qcPzCGxnQqhPLdMgSH+cU1nCRKbmyPGzYum
ApEp68SwJFZ4P7m0VkQS+LPPB1f84SHf0672hY8k6BvfKVcf5eFv2JMgkOQD
CKx6XnzhIaOhcf4D8MHZ/iF56gMP32pld+7exYfg9e8df77gof8O1ykTXXyI
7A0Ovv6Yh/ZHlSRkZKUgIXAixbeFhztbrD0fOElBUbhMTwvy8JZ4XmJgjRQM
5VgGX7jEQzZs+Fb4fWkgdFtS3HJ46J0wX7Fmigzwb64rlzgjZBPHA6tdZUC/
PogMO8nDNVKnG2oGZABWjWvMjeXhtMy6ba8sZMH5eYzjmygeim2Vf1CZKAvB
/Vkpjnt4uKk2ReIvkIPIXdrlRBAPg4ctjVaflYOEiZvdt/x5KBVsMaV0XA6K
pj7QUPXgoemphzp2dfIwbPir7JsVDzuvmHdmHZ8G/Um+Z2ct5qGtk6aEnJQi
9I48iHA25mGfwOh3xTlFaC/JtruqycOmcwYXlj1UgiZpUZ1OVR4mFCSNqO9U
hn9DQqaIKPHwVbb8XWUVFSgxtO3wleBhdINDa9uJ6VCQdP1OIiP0I7PT99vq
GXBhROFM1SSBSwnJQJ7GTMh0iTr0dYzAAr8pcwd5qpBc0u+tPEzgcju3F7Zh
qnBCeo2tQz+BNbonR5JHVeFISKVW2FsCI4Z3vdwXpga7DRMG258QeG00ifme
Pgu2Jf1sJ1oJVNM6H2O+aDb4jfjc1msg0MwiofhI72zwcHmQ4VFNoH+sdeOv
dHVYU2IcHldB4D37vOJRjzngJJ29qayUwG3b5Bb+nK8BNiEiNh+uEnjJO87x
sYwmGBu+FLPKJvB40v5DhfLaoJdkMxCUTuDPmT+iv5npgMbItUdZiQSe+ezo
/HS/LsxwUbjVHEegRpVymE/nXJAviUz/GU1gdKz4m6iNejBVuv+AZjiBHz5G
3Etj9YENWe21NpTAIXp20tsf+jD56J5VdBCB111+dZbRhvDDQEOj2J/AVVGx
cd3GRjCQeEr0lTeBhSqVp0sTF8CH4f++SGwgcKvIoM1jNRPo+cunzWwNgV5X
D0cOjSyEp8XNpf4rCNT6ut7NVN4MHkoZp6XaEdiiwwoichfDtnX2a9JsiP//
f/0P20/6KQ==
"]], LineBox[CompressedData["
1:eJw9V3lUzd33RqnefO6t7i3NmgdNkpCSDBGK4opSlCQkQnorJVFKRdL0lkJI
hKKB2/Bq7waUDPVKJGkiMlT3duep7/398/vjrL2e9ez9POfsddbZ6xgEhW/d
N2vGjBlt0vV/EZrDKeUm0zBu7zYlWLcI2XtKTPt0pkFctZ05N9UOK3Ytb/9b
aRqGbT5TvFIXYohv9yHKrGlInPUhvrTEFvW8w8gVLAnMa9LcSa5YgB+9ZCs3
fJdAclzUSg9HG8z0KKJ965VA0r/7LG/+sMIN6+05Ca8kIHo8Q72oxhJnub7K
1wEJGJ/V3pJ0xQLrXYKdaisl0CBs9HX+Zz5GOIn6aSUS2GDkmG181xytluYk
TORJQMbUJFr40gy/2lkZpadK/avXPn4vNsWrNq3PTOMkcNQSeIouprjdwv9A
8xEJjB1qzbe8aIJkU5bi7j0SaOn0PMwdNcYEXWOv3HUSGEyvDthaZ4QOmv8y
bZdJwGbigifF1ggZqttyX1lKwHbcmfG+whCDiKRPMioSWNzS5vu2yQC1FXRO
XZeRQEVzz99ftxlgt0yNnhNHDNbHPh6n/9HHtcKR4ON9YmAndF4es9FHCSdW
nvxGDGtby8zUy/XwCZN6rwzFcC7jxI1+WT00/7lmYvC2GCovfeiq6NDFwW99
l+PyxTBPR3SKvkwXC4Yi7DXSxRCtnt7nVKGDir23YjyPiiHl5Mb5RmXa2NLt
pPMrSAyvmZd1O220Ma7zXWOytxj421fZp9dp4Z8XMrKNjmJomvjSrdCviaUt
haW+1mL4btEY4hapibth0Qa2nhga5LcvSFfRxM4nezOsZovhx/4/n9y9NfB8
ldC2jSsCssqcphCROq6qyH6396cI9J3k1jSXqmPV7RaNwrciWBThkFQgq465
OUa3/roigovG/NaxQTXcnNmw9vYFETyKe9Kvek0N5S7Qfqw8LYJV7S2D0bvU
MDox0To6WMo3LVFIH1ZF29PandQdIlizQuBD3FXFsZPVxx9uEMH5yHv1YeGq
uPP4CH3URgS/hiK3xcuoIvVI7M6zBiI4E1UqmNNJxVcHqWJdVREc9g8OXXiN
is571qz25gsh37gpQ86Fivpet161tAjByarDxvcyBa9unn1yHV0IhccOR7w8
REGtTfvN2u8JIbJw17CrGwVVN1qefXNZCC3+r33sZ1LwL9fqpb0BQqidOEqz
TFDB5NVq3/xoQrhYPKdGOUgFZVdFZX1ZJ4TrNm3Wz11VUOLs9GfEWgiZ45pH
0ggVZC5tuTkuFAC9edTta4kyhi8x8To2IYDg8pjamgvK+Ns+RTw1LIDyKSMF
60hlHF3o7sNvF0CQjH2f7Hpl7LN8R5LNF8D3mov1b8aU0MdicUNyugBGC9cZ
qLcoYY/5Pwf+Oi2AuI3y5yKvKmGniV8LOUQAz4fik/y9lbBVbyRa014AHh39
7cu6yLhq3lrTIjMBWGpLGvKqyNioc+fdPG0B5CwNezGQQ8ZazUM2xrMEEN+U
8N3Yn4yLNV73lbL5sEim/rnGKjJWzV2QOn+MD3LnNm35YUrGcurUiE0nH55a
/KbPYZPQguJ9ubKFD85pVgU+/SS8q0xfYU/nA3uwwjriOQlvkmILll3jw2GL