-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathsudoku.lisp
389 lines (344 loc) · 12.8 KB
/
sudoku.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
;;;; sudoku.lisp --- Solving Every Sudoku Puzzle
;;
;; Copyright (C) 2012 Dimitri Fontaine
;;
;; Author: Dimitri Fontaine <dim@tapoueh.org>
;; GIT: https://github.com/dimitri/sudoku
;; Version: 1.0
;; Created: 2012-07-08
;; Keywords: common-lisp sudoku solver norvig
;; Licence: WTFPL, grab your copy here: http://sam.zoy.org/wtfpl/
;;
;; See http://norvig.com/sudoku.html
;;
;; A Sudoku puzzle is a grid of 81 squares; the majority of enthusiasts
;; label the columns 1-9, the rows A-I, and call a collection of nine
;; squares (column, row, or box) a unit and the squares that share a unit
;; the peers.
(in-package #:sudoku)
;; we're playing the useless benchmark-me trick, so well
(declaim (optimize speed))
(defparameter *row-names* "ABCDEFGHI"
"list of row names in a soduku puzzle")
(defparameter *easy50*
(asdf:system-relative-pathname :sudoku "easy50.txt"))
(defparameter *top95*
(asdf:system-relative-pathname :sudoku "top95.txt"))
(defparameter *hardest*
(asdf:system-relative-pathname :sudoku "hardest.txt"))
;; conditions
(define-condition empty-values (condition) ())
(define-condition unit-contains-contradictory-solution (condition) ())
;;
;; Tools to easily walk a square's peers and units
;;
(defun list-units-containing (row col)
"list indexes of all units of a given position"
(values
;; unit with peers on the same row
(loop for pc below 9 unless (= pc col) collect (cons row pc))
;; unit with peers on the same column
(loop for pr below 9 unless (= pr row) collect (cons pr col))
;; unit with peers in the same box
(let ((unit-first-row (* 3 (floor row 3)))
(unit-first-col (* 3 (floor col 3))))
(loop for pr from unit-first-row to (+ 2 unit-first-row)
append (loop for pc from unit-first-col to (+ 2 unit-first-col)
collect (cons pr pc))))))
(defun make-puzzle-units-array ()
"Return a puzzle units array"
(let ((u (make-array '(9 9) :element-type 'list)))
;; Every square has exactly 3 units and 20 peers
(loop for r below 9
do (loop for c below 9
do (setf (aref u r c)
(multiple-value-bind (peers-row peers-col peers-box)
(list-units-containing r c)
(list peers-row peers-col peers-box)))))
u))
(defun make-puzzle-peers-array ()
"Return a puzzle peers array"
(let ((p (make-array '(9 9) :element-type 'list)))
;; Every square has exactly 3 units and 20 peers
(loop for r below 9
do (loop for c below 9
do (setf (aref p r c)
(multiple-value-bind (peers-row peers-col peers-box)
(list-units-containing r c)
(remove-duplicates
(delete (cons r c)
(append peers-row peers-col peers-box)
:test 'equal)
:test 'equal)))))
p))
;; units and peers are the same for every Sudoku puzzle, so just compute
;; them once
(defparameter *units*
(make-puzzle-units-array)
"list of all possible units in a sudoku grid")
(defparameter *peers*
(make-puzzle-peers-array)
"list of all possible peers in a sudoku grid")
;; a puzzle is both the current game status and the values to explore still
(defclass puzzle ()
((grid :documentation "The sudoku grid we're solving"
:initform (make-array '(9 9)
:element-type '(integer 0 9)
:initial-element 0)
:initarg :grid)
(values :documentation "All possible values for each Sudoku place, as a bitfield"
:initform (make-array '(9 9)
:element-type '(integer 0 #b111111111)
:initial-element #b111111111)
:initarg :values)))
;; provide a way to copy a puzzle class instance
(defun copy-puzzle-array (array)
"copy given GRID"
(let ((a (make-array '(9 9) :element-type (array-element-type array))))
(loop for r below 9
do (loop for c below 9
do (setf (aref a r c) (aref array r c))))
a))
(defmethod copy-puzzle ((puzzle puzzle))
"Copy given PUZZLE into a whole new puzzle and return it"
(with-slots (grid values) puzzle
(make-instance 'puzzle
:grid (copy-puzzle-array grid)
:values (copy-puzzle-array values))))
;;
;; Basic testing
;;
(defun test ()
"A set of basic tests that must pass"
(let ((p (make-instance 'puzzle)))
(with-slots (grid values) p
(assert (equal (array-dimensions grid) '(9 9)))))
;; all units must have 3 elements
(assert (every (lambda (x) (= x 3))
(loop for r below 9
append (loop for c below 9
collect (length (aref *units* r c))))))
;; all peers must have 20 elements
(assert (every (lambda (x) (= x 20))
(loop for r below 9
append (loop for c below 9
collect (length (aref *peers* r c)))))))
;;
;; Some tools to deal with the bit-vector representation
;;
(defun count-remaining-possible-values (possible-values)
"How many possible values are left in there?"
;; we could raise an empty-values condition if we get 0...
(logcount possible-values))
(defun first-set-value (possible-values)
"Return the index of the first set value in POSSIBLE-VALUES."
(+ 1 (floor (log possible-values 2))))
(defun only-possible-value-is? (possible-values value)
"Return a generalized boolean which is true when the only value found in
POSSIBLE-VALUES is VALUE"
(and (logbitp (- value 1) possible-values)
(= 1 (logcount possible-values))))
(defun list-all-possible-values (possible-values)
"Return a list of all possible values to explore"
(loop for i from 1 to 9
when (logbitp (- i 1) possible-values)
collect i))
(defun value-is-set? (possible-values value)
"Return a generalized boolean which is true when given VALUE is possible
in POSSIBLE-VALUES"
(logbitp (- value 1) possible-values))
(defun unset-possible-value (possible-values value)
"return an integer representing POSSIBLE-VALUES with VALUE unset"
(logxor possible-values (ash 1 (- value 1))))
;;
;; Constraint propagation
;;
(defmethod assign ((puzzle puzzle) row col value)
"Assign given VALUE in cell ROWxCOL of PUZZLE, eliminating all other
values for given cell, and propagating that elimination to peers."
(with-slots (grid values) puzzle
(setf (aref grid row col) value) ; maintain the main grid
(loop for other-value from 1 to 9 ; then the unknown possible values
unless (= other-value value)
do (eliminate puzzle row col other-value)))
puzzle)
(defmethod eliminate-value-in-peers ((puzzle puzzle) row col value)
"Eliminate given VALUE from all peers of PUZZLE cell at ROWxCOL"
(loop for (r . c) in (aref *peers* row col)
do (eliminate puzzle r c value)))
(defmethod list-places-with-single-unit-solution ((puzzle puzzle) row col value)
"Check given PUZZLE for VALUE having a single choice of placement within
all peers units, and return the list of of such places as a (cons ROW COL)"
(with-slots (values) puzzle
(loop for unit in (aref *units* row col)
append (destructuring-bind (n positions)
(loop for (r . c) in unit
when (only-possible-value-is? (aref values r c) value)
count t into n and collect (cons r c) into p
finally (return (list n p)))
;; simply ignore n = 0, can't solve yet
(when (< 1 n)
;; if more than one place in that unit accepts only the
;; given value, that's a contradiction
(error 'unit-contains-contradictory-solution))
(when (= 1 n)
(list (first positions)))))))
(defmethod eliminate ((puzzle puzzle) row col value)
"Eliminate given VALUE from possible values in cell ROWxCOL of PUZZLE, and
propagate when needed"
(with-slots (grid values) puzzle
;; if already unset, work is already done
(when (value-is-set? (aref values row col) value)
;; eliminate the value from the set of possible values
(let* ((possible-values
(unset-possible-value (aref values row col) value)))
(setf (aref values row col) possible-values)
;; now if we're left with a single possible value
(when (= 1 (count-remaining-possible-values possible-values))
(let ((found-value (first-set-value possible-values)))
;; update the main grid
(setf (aref grid row col) found-value)
;; eliminate that value we just found in all peers
(eliminate-value-in-peers puzzle row col found-value)))
;; now check if any unit has a single possible place for that value
(loop
for (r . c)
in (list-places-with-single-unit-solution puzzle row col value)
do (assign puzzle r c value))))))
;;
;; parse a Grid
;;
(defmethod parse-grid ((puzzle puzzle) grid-string)
"Parse a given GRID-STRING and fill PUZZLE accordingly"
(with-slots (grid values) puzzle
;; fill in the grid
(loop
for index below 81
for digit = (parse-integer grid-string :start index :end (+ 1 index) :junk-allowed t)
do (setf (row-major-aref grid index) (or digit 0)))
;; now assign the values
(loop for r below 9
do (loop for c below 9
when (< 0 (aref grid r c))
do (assign puzzle r c (aref grid r c))))
puzzle))
;;
;; print a grid
;;
(defmethod puzzle-to-string ((puzzle puzzle))
"Return a string representation of puzzle, ready to display"
(when puzzle
(with-slots (grid) puzzle
(with-output-to-string (p)
(let* (*print-circle* *print-pretty*)
(flet ((format-some-cols (grid row &rest cols)
(loop for c in cols do (format p "~d " (aref grid row c)))))
(loop for r below 9
do
(when (and (< 0 r) (= 0 (mod r 3)))
(format p "------+-------+------~%"))
(format-some-cols grid r 0 1 2)
(format p "| ")
(format-some-cols grid r 3 4 5)
(format p "| ")
(format-some-cols grid r 6 7 8)
(format p "~%"))))))))
(defmethod print-puzzle ((puzzle puzzle))
"Print out a puzzle as a Sudoku grid, given its flat string representation"
(format t "~a" (puzzle-to-string puzzle))
puzzle)
;;
;; print a puzzle given its text input
;;
(defun make-puzzle (grid-string)
"Make a Sudoku puzzle given the GRID-STRING input"
(let ((p (make-instance 'puzzle)))
(parse-grid p grid-string)))
(defun print-grid (grid-string)
"Make a Sudoku puzzle given the GRID-STRING input, then print it"
(let ((p (make-puzzle grid-string)))
(print-puzzle p)))
;;
;; Search
;;
(defmethod puzzle-solved? ((puzzle puzzle))
"Return a generalized boolean which is true when all the values in the
puzzle are known"
(with-slots (grid) puzzle
(notany #'zerop
(loop for r below 9
append (loop for c below 9 collect (aref grid r c))))))
(defmethod find-position-with-fewest-possibilities ((puzzle puzzle))
"get a sorted list of counts of possible values (count (row . col)) in the
puzzle grid"
(with-slots (values) puzzle
(destructuring-bind (n (row . col))
(first
(sort
(loop for r below 9
append (loop for c below 9
for n = (count-remaining-possible-values (aref values r c))
when (< 1 n)
collect (list n (cons r c))))
(lambda (a b)
(< (car a) (car b)))))
(declare (ignore n))
(cons row col))))
(defmethod search-puzzle ((puzzle puzzle))
"Using depth-first search and propagation, try all possible values."
(cond
((null puzzle) nil) ; earlier failure
((puzzle-solved? puzzle) puzzle) ; solved
(t ; search
;; Chose the unfilled square s with the fewest possibilities
(with-slots (values) puzzle
(destructuring-bind (row . col)
(find-position-with-fewest-possibilities puzzle)
(some
(lambda (c)
(handler-case ; skip search errors and continue
(search-puzzle (assign (copy-puzzle puzzle) row col c))
(empty-values () nil)
(unit-contains-contradictory-solution () nil)))
(list-all-possible-values (aref values row col))))))))
(defun solve-grid (grid-string)
"Make a puzzle from GRID-STRING, search solutions"
(search-puzzle (make-puzzle grid-string)))
;; Tests with some grids
(defun read-grids-in-file (filename)
"Read one grid per line in the given file and return them as a list"
(with-open-file (s filename :direction :input)
(loop for line = (read-line s nil)
while line
collect line)))
(defmacro timing (&body forms)
"return both how much real time was spend in body and its result"
(let ((start (gensym))
(end (gensym))
(result (gensym)))
`(let* ((,start (get-internal-real-time))
(,result (progn ,@forms))
(,end (get-internal-real-time)))
(values ,result (/ (- ,end ,start) internal-time-units-per-second)))))
(defun solve-grids (name grids)
"Solve all grids given and report timings"
(loop for grid in grids
for (timing solved?) = (multiple-value-bind (puzzle timing)
(timing (solve-grid grid))
(list timing (puzzle-solved? puzzle)))
sum timing into s
count t into n
count solved? into x
maximize timing into m
finally
(return
(format nil
"Solved ~d of ~d ~a puzzles (avg ~5f sec (~5f Hz), max ~5f secs)."
x n name (/ s n) (/ n s) m))))
(defun solve-example-grids ()
"Solve all the grids given in examples files"
(format t "~{~a~^~%~}"
(loop for (filename report-name) in `((,*easy50* "easy")
(,*top95* "hard")
(,*hardest* "hardest"))
collect (solve-grids report-name (read-grids-in-file filename)))))