-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_traces.py
178 lines (154 loc) · 6.3 KB
/
generate_traces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# ------------------------------------------------------------------------
# This code is adapted on code originally written in the paper:
#
# Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo Goiri,
# Saeed Maleki, Ricardo Bianchini. "Splitwise: Efficient Generative LLM
# Inference Using Phase Splitting", in Proceedings of the International
# Symposium on Computer Architecture (ISCA 2024). ACM, Buenos Aires,
# Argentina, 2024.
#
# Source Code: https://github.com/Mutinifni/splitwise-sim
# Date Accessed: September 2024
# ------------------------------------------------------------------------
import os
from collections import namedtuple
import requests
import numpy as np
import pandas as pd
from scipy import stats
Distributions = namedtuple('Distributions', ['arrival_process',
'prompt_size',
'token_size'])
Distribution = namedtuple('Distribution', ['name', 'params'])
def generate_samples(distribution, params, size):
"""
Generate random samples from the given distribution.
"""
if distribution == "constant":
return np.ones(size) * params["value"]
elif distribution == "normal":
return stats.norm(**params).rvs(size=size)
elif distribution == "truncnorm":
return stats.truncnorm(**params).rvs(size=size)
elif distribution == "randint":
return stats.uniform(**params).rvs(size=size)
elif distribution == "uniform":
return stats.uniform(**params).rvs(size=size)
elif distribution == "exponential":
return stats.expon(**params).rvs(size=size)
elif distribution == "poisson":
return stats.poisson(**params).rvs(size=size)
elif distribution == "trace":
df = pd.read_csv(params["filename"])
return df[params["column"]].sample(size, replace=True).values
else:
raise ValueError(f"Invalid distribution: {distribution}")
def generate_trace(max_requests, distributions, end_time=None):
"""
Generate a trace of requests based on the given distributions.
"""
# Generate request IDs
request_ids = np.arange(max_requests)
# Generate the distributions
arrival_timestamps = generate_samples(distributions.arrival_process.name,
distributions.arrival_process.params,
max_requests)
arrival_timestamps = np.cumsum(arrival_timestamps)
prompt_sizes = generate_samples(distributions.prompt_size.name,
distributions.prompt_size.params,
max_requests)
prompt_sizes = map(int, prompt_sizes)
token_sizes = generate_samples(distributions.token_size.name,
distributions.token_size.params,
max_requests)
token_sizes = map(int, token_sizes)
# Combine the arrays into a DataFrame
trace_df = pd.DataFrame({
"request_id": request_ids,
"arrival_timestamp": arrival_timestamps,
"prompt_size": prompt_sizes,
"token_size": token_sizes,
})
if end_time is not None:
trace_df = trace_df[trace_df["arrival_timestamp"] < end_time]
return trace_df
def generate_trace_from_prompt_token_size_distributions(
max_requests,
end_time,
request_rate,
pt_distributions_filename):
"""
Generate request traces for the simulator using prompt and token
size distributions.
"""
distributions = Distributions(
arrival_process=Distribution("exponential", {"scale": 1.0 / request_rate}),
prompt_size=Distribution("trace", {"filename": pt_distributions_filename,
"column": "ContextTokens"}),
token_size=Distribution("trace", {"filename": pt_distributions_filename,
"column": "GeneratedTokens"}),
)
trace_df = generate_trace(max_requests,
distributions,
end_time=end_time)
return trace_df
def generate_traces(max_requests,
end_time,
request_rates,
pt_distributions_file,
trace_filename_template):
"""
Generate traces with prompt/token size distributions.
"""
for request_rate in request_rates:
trace_df = generate_trace_from_prompt_token_size_distributions(
max_requests,
end_time,
request_rate,
pt_distributions_file)
trace_filename = trace_filename_template.format(request_rate)
trace_df.to_csv(trace_filename, index=False)
def generate_conv_traces(
max_requests,
end_time,
request_rates,
conv_distributions_file,
trace_filename_template="traces/rr_conv_{}.csv"):
"""
conv traces distribution
prompt_mean = 1155, prompt_std = 1109, prompt_min = 2, prompt_max = 14050
token_mean = 211, token_std = 163, token_min = 7, token_max = 1000
"""
if not os.path.exists(trace_filename_template[:trace_filename_template.rfind("/")]):
os.makedirs(trace_filename_template[:trace_filename_template.rfind("/")])
generate_traces(max_requests,
end_time,
request_rates,
conv_distributions_file,
trace_filename_template)
def download_file(url, filename):
"""
Download a file from the given URL.
"""
response = requests.get(url)
with open(filename, "wb") as f:
f.write(response.content)
def download_azure_llm_traces():
"""
Download traces from the given URL.
"""
if not os.path.exists("data"):
os.makedirs("data")
url_base = "https://raw.githubusercontent.com/Azure/AzurePublicDataset/master/data/"
if not os.path.exists("data/conv_distributions.csv"):
url = url_base + "AzureLLMInferenceTrace_conv.csv"
download_file(url, "data/conv_distributions.csv")
print("Downloaded conv traces")
if __name__ == "__main__":
# download prompt and token size distributions
download_azure_llm_traces()
generate_conv_traces(
max_requests=10000,
end_time=5, # in seconds
request_rates=list(range(5, 21, 5)), # requests per second
conv_distributions_file="data/conv_distributions.csv")