diff --git a/Project.toml b/Project.toml index 06ae21a..78b3ca8 100644 --- a/Project.toml +++ b/Project.toml @@ -39,7 +39,7 @@ Documenter = "1" DocumenterVitepress = "0.0.19, 0.0.20" HDF5 = "0.17.2" Interpolations = "0.15.1" -ITKIOWrapper = "0.0.2" +ITKIOWrapper = "0.0.3" JLD = "0.13.5" JSON = "0.21.4" Parameters = "0.12.3" diff --git a/src/Load_and_save.jl b/src/Load_and_save.jl index 5d1d979..f4bd53e 100644 --- a/src/Load_and_save.jl +++ b/src/Load_and_save.jl @@ -71,7 +71,7 @@ function load_images(path::String, modality::String)::Array{MedImage} voxel_arr = ITKIOWrapper.loadVoxelData(path,spatial_meta) voxel_arr = voxel_arr.dat - voxel_arr = permutedims(voxel_arr, (3, 2, 1)) + voxel_arr = permutedims(voxel_arr, (1, 2, 3)) spatial_metadata_keys = ["origin", "spacing", "direction"] spatial_metadata_values = [origin, spacing, direction] spatial_metadata = Dictionaries.Dictionary(spatial_metadata_keys, spatial_metadata_values) @@ -88,7 +88,7 @@ function create_nii_from_medimage(med_image::MedImage, file_path::String) # Convert voxel_data to a numpy array (Assuming voxel_data is stored in Julia array format) voxel_data_np = med_image.voxel_data voxel_data_np = permutedims(voxel_data_np, (3, 2, 1)) - # Create a SimpleITK image from numpy array + #Create a SimpleITK image from numpy array sitk = pyimport("SimpleITK") image_sitk = sitk.GetImageFromArray(voxel_data_np)