-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathhough.py
90 lines (72 loc) · 2.71 KB
/
hough.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
def hough():
'''
The Hough Transform is a Popular technique
to detect any shape, if you can represent
that shape in a mathematical form, It can
detect the shape even if it is broken or
distorted a little bit.
# Θ Theta
A line in the image space can be expressed
with two variables.
For ex:
-In Cartesian Coordinate System
y = mx + c
-In the polar coordinate system
x cosΘ + y sinΘ = r
Hough Transformation Algorithm
-------------------------------
1. Edge detection, e.g Using the Canny Edge
Detector.
2. Mapping of the edge points to the Hough
space and storage in an accumulator
3. Interpretation of the accumulator to
yield lines of infinite length. The
interpretation is done by thresholding
and possibly other constraints.
4. Conversion of infinite lines to finite lines.
OpenCV's Two kinds of Hough line Transforms
-------------------------------------------
o The Standard Hough Transform (HoughLines method)
o The Probabilistic Hough Line Transform (HoughLinesP)
'''
img = cv.imread("./img/sudoku.jpg")
img = cv.resize(img, (500, 500))
gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray_img, 50, 150, apertureSize=3)
lines = cv.HoughLines(edges, 1, np.pi/180, 200)
for line in lines:
rho, theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a * rho
y0 = b * rho
# x1 stores the rounded off value of (r* cosΘ - 1000 * sinΘ)
x1 = int(x0 + 1000 * (-b))
# y1 stores the rounded off value of (r * sinΘ + 1000 * cosΘ)
y1 = int(y0 + 1000 * (a))
# x2 stores the rounded off value of (r * cosΘ + 1000 * sinΘ)
x2 = int(x0 - 1000 * (-b))
# y2 stores the rounded off value of (r * sinΘ - 1000 * cosΘ)
y2 = int(y0 - 1000 * (a))
cv.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv.imshow("Image", img)
cv.imshow("Canny", edges)
cv.waitKey()
cv.destroyAllWindows()
def houghP():
img = cv.imread("./img/road.jpg")
img = cv.resize(img, (500, 500))
gray_img = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray_img, 170, 200, apertureSize=3)
lines = cv.HoughLinesP(edges, 1, np.pi/180, 100,
minLineLength=100, maxLineGap=10)
for line in lines:
x1, y1, x2, y2 = line[0]
cv.line(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv.imshow("Image", img)
cv.imshow("Canny", edges)
cv.waitKey()
cv.destroyAllWindows()