-
Notifications
You must be signed in to change notification settings - Fork 2
/
wideresnet.py
120 lines (109 loc) · 4.01 KB
/
wideresnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers import (MetaModule, MetaConv2d, MetaBatchNorm2d, MetaLinear)
class BasicBlock(MetaModule):
def __init__(self, in_planes, out_planes, stride, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = MetaBatchNorm2d(in_planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = MetaConv2d(in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False)
self.bn2 = MetaBatchNorm2d(out_planes)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = MetaConv2d(out_planes,
out_planes,
kernel_size=3,
stride=1,
padding=1,
bias=False)
self.droprate = dropRate
self.equalInOut = (in_planes == out_planes)
self.convShortcut = (not self.equalInOut) and MetaConv2d(
in_planes,
out_planes,
kernel_size=1,
stride=stride,
padding=0,
bias=False) or None
def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
else:
out = self.relu1(self.bn1(x))
out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(out)
return torch.add(x if self.equalInOut else self.convShortcut(x), out)
class NetworkBlock(MetaModule):
def __init__(self,
nb_layers,
in_planes,
out_planes,
block,
stride,
dropRate=0.0):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(block, in_planes, out_planes, nb_layers,
stride, dropRate)
def _make_layer(self, block, in_planes, out_planes, nb_layers, stride,
dropRate):
layers = []
for i in range(int(nb_layers)):
layers.append(
block(i == 0 and in_planes or out_planes, out_planes,
i == 0 and stride or 1, dropRate))
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet(MetaModule):
def __init__(self, depth, num_classes, widen_factor=1, dropRate=0.0):
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert ((depth - 4) % 6 == 0)
n = (depth - 4) / 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = MetaConv2d(3,
nChannels[0],
kernel_size=3,
stride=1,
padding=1,
bias=False)
# 1st block
self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1,
dropRate)
# 2nd block
self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2,
dropRate)
# 3rd block
self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2,
dropRate)
# global average pooling and classifier
self.bn1 = MetaBatchNorm2d(nChannels[3])
self.relu = nn.ReLU(inplace=True)
self.fc = MetaLinear(nChannels[3], num_classes)
self.nChannels = nChannels[3]
for m in self.modules():
if isinstance(m, MetaConv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, MetaBatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, MetaLinear):
m.bias.data.zero_()
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels)
return self.fc(out)