-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathcovid_data_briefing.py
1039 lines (922 loc) · 51.8 KB
/
covid_data_briefing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import datetime
import functools
import re
import time
from itertools import islice
import numpy as np
import pandas as pd
from bs4 import BeautifulSoup
from dateutil.parser import parse as d
import covid_plot_cases
import covid_plot_deaths
from utils_pandas import daterange
from utils_pandas import export
from utils_pandas import import_csv
from utils_scraping import any_in
from utils_scraping import camelot_cache
from utils_scraping import get_next_number
from utils_scraping import get_next_numbers
from utils_scraping import logger
from utils_scraping import MAX_DAYS
from utils_scraping import NUM_OR_DASH
from utils_scraping import pairwise
from utils_scraping import parse_file
from utils_scraping import parse_numbers
from utils_scraping import seperate
from utils_scraping import split
from utils_scraping import strip
from utils_scraping import USE_CACHE_DATA
from utils_scraping import web_files
from utils_thai import file2date
from utils_thai import find_thai_date
from utils_thai import get_province
from utils_thai import join_provinces
from utils_thai import parse_gender
from utils_thai import today
def briefing_case_detail_lines(soup):
parts = soup.find_all('p')
parts = [c for c in [c.strip() for c in [c.get_text() for c in parts]] if c]
maintitle, parts = seperate(parts, lambda x: "วันที่" in x)
if not maintitle or "ผู้ป่วยรายใหม่ประเทศไทย" not in maintitle[0]:
return
# footer, parts = seperate(parts, lambda x: "กรมควบคุมโรค กระทรวงสาธารณสุข" in x)
table = list(split(parts, re.compile(r"^\w*[0-9]+\.").match))
if len(table) == 2:
# titles at the end
table, titles = table
table = [titles, table]
else:
table.pop(0)
# if only one table we can use camelot to get the table. will be slow but less problems
# ctable = camelot.read_pdf(file, pages="6", process_background=True)[0].df
for titles, cells in pairwise(table):
title = titles[0].strip("(ต่อ)").strip()
header, cells = seperate(cells, re.compile("ลักษณะผู้ติดเชื้อ").search)
# "อยู่ระหว่างสอบสวน (93 ราย)" on 2021-04-05 screws things up as its not a province
# have to use look behind
thai = r"[\u0E00-\u0E7Fa-zA-Z'. ]+[\u0E00-\u0E7Fa-zA-Z'.]"
not_prov = r"(?<!อยู่ระหว่างสอบสวน)(?<!ยู่ระหว่างสอบสวน)(?<!ระหว่างสอบสวน)"
provish = f"{thai}{not_prov}"
nl = " *\n* *"
nu = "(?:[0-9]+)"
is_pcell = re.compile(rf"({provish}(?:{nl}\({provish}\))?{nl}\( *{nu} *ราย *\))")
lines = pairwise(islice(is_pcell.split("\n".join(cells)), 1, None)) # because can be split over <p>
yield title, lines
def briefing_case_detail(date, pages):
num_people = re.compile(r"([0-9]+) *ราย")
totals = dict() # groupname -> running total
all_cells = {}
rows = []
if date <= d("2021-02-26"): # missing 2nd page of first lot (1.1)
pages = []
for soup in pages:
for title, lines in briefing_case_detail_lines(soup):
if "ติดเชื้อจากต่างประเทศ" in title: # imported
continue
elif "การคัดกรองเชิงรุก" in title:
case_type = "Proactive"
elif "เดินทางมาจากต่างประเทศ" in title:
# case_type = "Quarantine"
continue # just care about province cases for now
# if re.search("(จากระบบเฝ้าระวัง|ติดเชื้อในประเทศ)", title):
else:
case_type = "Walkin"
all_cells.setdefault(title, []).append(lines)
# print(title,case_type)
for prov_num, line in lines:
# for prov in provs: # TODO: should really be 1. make split only split 1.
# TODO: sometimes cells/data separated by "-" 2021-01-03
prov, num = prov_num.strip().split("(", 1)
prov = get_province(prov)
num = int(num_people.search(num).group(1))
totals[title] = totals.get(title, 0) + num
_, rest = get_next_numbers(line, "(?:nผล|ผลพบ)") # "result"
asym, rest = get_next_number(
rest,
"(?s)^.*(?:ไม่มีอาการ|ไมมี่อาการ|ไม่มีอาการ)",
default=0,
remove=True
)
sym, rest = get_next_number(
rest,
"(?s)^.*(?<!(?:ไม่มี|ไมมี่|ไม่มี))(?:อาการ|อาการ)",
default=0,
remove=True
)
unknown, _ = get_next_number(
rest,
"อยู่ระหว่างสอบสวนโรค",
# "อยู่ระหว่างสอบสวน",
"อยู่ระหว่างสอบสวน",
"อยู่ระหว่างสอบสวน",
"ไม่ระบุ",
default=0)
# unknown2 = get_next_number(
# rest,
# "อยู่ระหว่างสอบสวน",
# "อยู่ระหว่างสอบสวน",
# default=0)
# if unknown2:
# unknown = unknown2
# TODO: if 1, can be by itself
if asym == 0 and sym == 0 and unknown == 0:
sym, asym, unknown = None, None, None
else:
assert asym + sym + unknown == num
rows.append((date, prov, case_type, num, asym, sym))
# checksum on title totals
for title, total in totals.items():
m = num_people.search(title)
if not m:
continue
if date in [d("2021-03-19")]: # 1.1 64!=56
continue
assert total == int(m.group(1)), f"group total={total} instead of: {title}\n{all_cells[title]}"
df = pd.DataFrame(
rows,
columns=["Date", "Province", "Case Type", "Cases", "Cases Asymptomatic", "Cases Symptomatic"]
).set_index(['Date', 'Province'])
return df
def briefing_case_types(date, pages, url):
rows = []
vac_rows = []
if date < d("2021-02-01"):
pages = []
for i, soup in enumerate(pages):
text = soup.get_text()
if "รายงานสถานการณ์" not in text:
continue
# cases = get_next_number(text, "ติดเชื้อจาก", before=True)
# walkins = get_next_number(text.split("รายผู้ที่เดิน")[0], "ในประเทศ", until="ราย")
# quarantine = get_next_number(text, "ต่างประเทศ", until="ราย", default=0)
if date == d("2021-05-17"):
numbers, rest = get_next_numbers(text.split("อาการหนัก")[1], "ในประเทศ", dash_as_zero=True)
local, cases, imported, prison, walkins, proactive, imported2, prison2, *_ = numbers
assert local == walkins + proactive
assert imported == imported2
assert prison == prison2
else:
numbers, rest = get_next_numbers(text, "รวม", until="รายผู้ที่เดิน", dash_as_zero=True)
cases, walkins, proactive, *quarantine = numbers
domestic = get_next_number(rest, "ในประเทศ", return_rest=False, until="ราย")
if date in [d("2022-06-24")]:
walkins = 2309
elif [d("2021-11-22"), d("2021-12-02"), d("2021-12-29"), d("2022-03-31")]:
# Either domestic number is wrong or proactive is wrong
pass
elif domestic:
assert domestic <= cases
assert domestic == walkins + proactive
quarantine = quarantine[0] if quarantine else 0
ports, _ = get_next_number(
text,
"ช่องเส้นทางธรรมชาติ",
"รายผู้ที่เดินทางมาจากต่างประเทศ",
before=True,
default=0,
dash_as_zero=True
)
imported = ports + quarantine
prison, _ = get_next_number(text.split("รวม")[1], "ที่ต้องขัง", default=0, until="ราย", dash_as_zero=True)
if date == d("2022-03-22"):
# order got changed around
prison = 44
# Prison and imported switched around
imported = {d("2022-07-13"): 0, d("2022-06-14"): 1, d("2022-07-17"): 0}.get(date, imported)
prison = {d("2022-06-10"): 0}.get(date, prison)
cases2 = get_next_number(rest, r"\+", return_rest=False, until="ราย")
if cases2 is not None and cases2 != cases:
# Total cases moved to the bottom
# cases == domestic
cases = cases2
assert cases == domestic + imported + prison
if date in [d("2021-11-01")]:
pass
else:
assert cases == walkins + proactive + imported + prison, f"{date}: briefing case types don't match"
# hospitalisations
hospital, field, severe, respirator, hospitalised = [np.nan] * 5
numbers, rest = get_next_numbers(text, "อาการหนัก")
if numbers:
severe, respirator, *_ = numbers
hospital, _ = get_next_number(text, "ใน รพ.")
field, _ = get_next_number(text, "รพ.สนาม")
num, _ = get_next_numbers(text, "ใน รพ.", before=True)
hospitalised = num[0]
if date in [d("2021-09-04"), d("2022-03-07"), d("2022-07-10")]:
pass
else:
assert hospital + field == hospitalised
elif "ผู้ป่วยรักษาอยู่" in text:
hospitalised, *_ = get_next_numbers(text, "ผู้ป่วยรักษาอยู่", return_rest=False, before=True)
if date > d("2021-03-31"): # don't seem to add up before this
hospital, *_ = get_next_numbers(text, "ใน รพ.", return_rest=False, until="ราย")
field, *_ = get_next_numbers(text, "รพ.สนาม", return_rest=False, until="ราย")
assert hospital + field == hospitalised
if date < d("2021-05-18"):
recovered, _ = get_next_number(text, "(เพ่ิมขึ้น|เพิ่มขึ้น)", until="ราย")
else:
# 2021-05-18 Using single infographic with 3rd wave numbers?
numbers, _ = get_next_numbers(text, "หายป่วยแล้ว", "หายป่วยแลว้")
cum_recovered_3rd, recovered, *_ = numbers
if cum_recovered_3rd < recovered:
recovered = cum_recovered_3rd
assert not pd.isna(recovered)
occupancy = next(iter(get_next_numbers(text, "ครองเตียงระดับ 2-3", return_rest=False, ints=False)), np.nan)
deaths, _ = get_next_number(text, "เสียชีวิตสะสม", "เสียชีวติสะสม", "เสียชีวติ", before=True)
assert not any_in([None], cases, walkins, proactive, imported, recovered, deaths)
if date > d("2021-04-23"):
assert not any_in([None], hospital, field, severe, respirator, hospitalised)
# cases by region
# bangkok, _ = get_next_number(text, "กรุงเทพฯ และนนทบุรี")
# north, _ = get_next_number(text, "ภาคเหนือ")
# south, _ = get_next_number(text, "ภาคใต้")
# east, _ = get_next_number(text, "ภาคตะวันออก")
# central, _ = get_next_number(text, "ภาคกลาง")
# all_regions = north+south+east+central
# assert hospitalised == all_regions, f"Regional hospitalised {all_regions} != {hospitalised}"
rows.append([
date,
cases,
walkins,
proactive,
imported,
prison,
hospital,
field,
severe,
respirator,
hospitalised,
occupancy,
recovered,
deaths,
url,
])
break
df = pd.DataFrame(rows, columns=[
"Date",
"Cases",
"Cases Walkin",
"Cases Proactive",
"Cases Imported",
"Cases Area Prison", # Keep as Area so we don't repeat number.
"Hospitalized Hospital",
"Hospitalized Field",
"Hospitalized Severe",
"Hospitalized Respirator",
"Hospitalized",
"Hospitalized Occupancy Level 2-3 %",
"Recovered",
"Deaths",
"Source Cases",
]).set_index(['Date'])
if not df.empty:
logger.info("{} Briefing Cases: {}", date.date(), df.to_string(header=False, index=False))
return df
def briefing_province_cases(file, date, pages):
# TODO: also can be got from https://ddc.moph.go.th/viralpneumonia/file/scoreboard/scoreboard_02062564.pdf
# Seems updated around 3pm so perhaps not better than briefing
if date < d("2021-01-13"):
pages = []
rows = {}
for pagenum, soup in enumerate(pages):
text = str(soup)
if "รวมท ัง้ประเทศ" in text:
continue
if not re.search(r"(?:ที่|ที|ท่ี)#?\s*(?:จังหวัด|จงัหวดั)", text): # 'ที# จงัหวดั' 2021-10-17
continue
if not re.search(r"(นวนผู้ติดเชื้อโควิดในประเทศรำยใหม่|อโควิดในประเทศรายให)", text):
continue
parts = [p.get_text() for p in soup.find_all("p")]
# parts = [line for line in parts if line]
parts = [p for line in parts for p in line.split("\n") if p]
preamble, *tables = split(parts, re.compile(r"รวม\s*\((?:ราย|รำย)\)").search)
if len(tables) <= 1:
continue # Additional top 10 report. #TODO: better detection of right report
else:
title, parts = tables
while parts and "รวม" in parts[0]:
# get rid of totals line at the top
totals, *parts = parts
# First line might be several
totals, *more_lines = totals.split("\n", 1)
parts = more_lines + parts
parts = [c.strip() for c in NUM_OR_DASH.split("\n".join(parts)) if c.strip()]
while True:
if len(parts) < 9:
# TODO: can be number unknown cases - e.g. หมายเหตุ : รอสอบสวนโรค จานวน 337 ราย
break
if NUM_OR_DASH.search(parts[0]):
linenum, prov, *parts = parts
else:
# for some reason the line number doesn't show up? but it's there in the pdf...
break
numbers, parts = parts[:9], parts[9:]
thai = prov.strip().strip(" ี").strip(" ์").strip(" ิ")
if thai in ['กทม. และปรมิ ณฑล', 'รวมจงัหวดัอนื่ๆ(']:
# bangkok + suburbs, rest of thailand
break
prov = get_province(thai)
numbers = parse_numbers(numbers)
numbers = numbers[1:-1] # last is total. first is previous days
assert len(numbers) == 7
for i, cases in enumerate(reversed(numbers)):
if i > 4: # 2021-01-11 they use earlier cols for date ranges
break
olddate = date - datetime.timedelta(days=i)
if (olddate, prov) not in rows:
rows[(olddate, prov)] = cases
else:
# TODO: apparently 2021-05-13 had to merge two lines but why?
# assert (olddate, prov) not in rows, f"{prov} twice in prov table line {linenum}"
pass # if duplicate we will catch it below
# if False and olddate == date:
# if cases > 0:
# print(date, linenum, thai, PROVINCES["ProvinceEn"].loc[prov], cases)
# else:
# print("no cases", linenum, thai, *numbers)
data = ((d, p, c) for (d, p), c in rows.items())
df = pd.DataFrame(data, columns=["Date", "Province", "Cases"]).set_index(["Date", "Province"])
if date < d("2021-01-13") or date >= d("2022-06-02"):
return df
else:
assert not df.empty, f"Briefing on {date} failed to parse cases per province"
if date > d("2021-05-12") and date not in [d("2021-07-18"), d("2022-02-02")]:
# TODO: 2021-07-18 has only 76 prov. not sure why yet. maybe doubled up or mispelled names?
# 2022-02-02: page 2 is repeat of page 1 so missing data
assert len(df.groupby("Province").count()) in [77, 78], f"Not enough provinces briefing {date}"
return df
def briefing_deaths_provinces(dtext, date, file):
if not deaths_title_re.search(dtext):
return pd.DataFrame(columns=["Date", "Province"]).set_index(["Date", "Province"])
bullets_re = re.compile(r"((?:•|� )[^\(]*?\( ?\d+ ?\)(?:[\n ]*\([^\)]+\))?)\n?")
# get rid of extra words in brackets to make easier
text = re.sub(r"\b(ละ|จังหวัด|จังหวัด|อย่างละ|ราย)\b", " ", dtext)
# remove age breakdown of deaths per province to make it easier
# e.g "60+ปี 58 ราย (85%)" - from 2021-08-24
text = re.sub(r"([\d-]+\+?\s?(?:ปี)? *\d* *(?:ราย)? *\(\d+%?\))", " ", text)
# and '50+ (14)' 2021-08-26
text = re.sub(r"([\d]+\+?(?:ปี)? *\(\d+\))", " ", text)
# (รายงานหลังเสียชีวิตเกิน 7 วัน 17 ) 2021-09-07
text = re.sub(r"\( *\S* *\d+ วัน *\d+ *\)", " ", text)
# # 2021-10-17 get
# text = re.sub(r"� ", "• ", text)
# remove the table header and page title.
*pre, table_content = re.split(r"(?:โควิด[ \n-]*19\n\n|รวม\s*\(\s+\))", text, 1)
# Provinces are split between bullets with disease and risk. Normally bangkok first line above and rest below
ptext1, b1, rest_bullets = bullets_re.split(table_content, 1)
if "หญิง" in rest_bullets: # new format on 2021-08-09 - no gender and prov no longer shoved in the middle.
rest_bullets2, gender = re.split("• *(?:หญิง|ชาย)", b1 + rest_bullets, 1)
*bullets, ptext2 = bullets_re.split(rest_bullets2)
ptext2, *age_text = re.split("•", ptext2, 1)
else:
ptext2 = ""
ptext = ptext1 + ptext2
# Now we have text that just contains provinces and numbers
# but could have subtotals. Get each word + number (or 2 number) combo
pcells = pairwise(strip(re.split(r"(\(?(?:\d|-)+\)?\s*\d*)", ptext)))
province_count = {}
last_provs = None
def add_deaths(provinces, num, bracket=False):
provs_thai = [p.strip("() ") for p in provinces.split() if len(p) > 1 and p.strip("() ")]
provs = [pr for p in provs_thai for pr in get_province(p, ignore_error=True, cutoff=0.76, split=True)]
# TODO: unknown from another cell get in there. Work out how to remove it a better way
provs = [p for p in provs if p and p != "Unknown"]
if date >= d("2022-01-22") and len(provs) == num and num > 1 and not bracket:
# special case where (1) is missing and total number is used
num = 1
if date >= d("2022-03-20") and provs != ['Bangkok'] and not bracket and num > 1:
# 2022-03-20: last prov in section missing (1)
# Let's hope these are well formatted after this
num = 1
for p in provs:
province_count[p] = province_count.get(p, 0) + num
for provinces, num_text in pcells:
# len() < 2 because some stray modifier?
bracket = any_in(num_text, "(", ")")
text_num, rest = get_next_number(provinces, remove=True, dash_as_zero=True)
num, _ = get_next_number(num_text, dash_as_zero=True)
if num is None and text_num is not None:
num = text_num
elif num is None:
raise Exception(f"No number of deaths found {date}: {text}")
elif text_num is not None:
raise Exception(f"Two numbers found {date}: {text}")
if rest.strip().startswith("("):
# special case where some in that province are in prison
# take them out of last prov and put into special province
if not last_provs:
raise Exception(f"subset of province can't be adjusted for {rest}")
add_deaths(last_provs, -num) # TODO: should only be prison. check this
add_deaths(rest, num, bracket)
last_provs = rest
dfprov = pd.DataFrame(((date, p, c) for p, c in province_count.items()),
columns=["Date", "Province", "Deaths"]).set_index(["Date", "Province"])
title_num, _ = get_next_numbers(text, deaths_title_re)
day, year, deaths_title, *_ = title_num
deaths_title = {d("2022-09-23"): 9}.get(date, deaths_title)
if date in [d("2021-07-20"), d("2021-12-15"), d("2022-01-14"), d("2022-01-21"), d("2022-01-23"), d("2022-01-31"), d("2022-02-26"), d("2022-03-04")]:
# 2021-12-15 - missing one from eastern
# 2022-02-26 - Uttaradit(2) Chiang Mai, Chiang Rai, Uthai Thani(1) 6
# 2022-03-04 - 9!=10 Lopburi(3) Kanchanaburi(2) Chonburi Nakhon Nayok Saraburi Prachinburi(1) 10
pass
elif date in [d("2022-03-08"), d("2022-03-18"), d("2022-03-31"), d("2022-08-15")]:
# 2022-03-08 - wrong total and subtotals
# 2022-03-18 - only got 77. and south and west got combined?
# 2022-03-31 - "Nakhon Si Thammarat(8) Chumphon(1) Krabi(1) 9"
# 2022-08-15 - adds to 33. maybe public total (30) is wrong?
pass
else:
msg = f"in {file} only found {dfprov['Deaths'].sum()}/{deaths_title} from {dtext}\n{pcells}"
assert deaths_title == dfprov['Deaths'].sum(), msg
return dfprov
deaths_title_re = re.compile(r"(ผูป่้วยโรคโควดิ-19|วยโรคโควิด-19) (เสยีชวีติ|เสียชีวิต) (ของประเทศไทย|ของประเทศไทย)") # noqa
# ผู;ป=วยโรคโควิด-19 เสียชีวิต ของประเทศไทย รายงานวันท่ี 17 ต.ค. 64 (+68 ราย)
def briefing_deaths_summary(text, date, file):
if not deaths_title_re.search(text):
return pd.DataFrame()
# Summary of locations, reasons, medium age, etc
# Congenital disease / risk factor The severity of the disease
# congenital_disease = df[2][0] # TODO: parse?
# Risk factors for COVID-19 infection
# risk_factors = df[3][0]
numbers, *_ = get_next_numbers(text,
"ามัธยฐานของอา",
"ค่ากลางขอ(?:งอ)?ายุ",
"ามัธยฐานอายุ",
"• ค่ากลาง",
"ค่ากลางอาย ุ",
ints=False)
if numbers:
med_age, min_age, max_age, *_ = numbers
else:
# 2021-09-15 no medium
numbers = get_next_numbers(text, "อายุระหว่าง", until="ปี", return_rest=False)
min_age, max_age = numbers
med_age = None
if date in [d("2021-12-21")]:
max_age = np.nan
else:
assert max_age > min_age
title_num, _ = get_next_numbers(text, deaths_title_re)
day, year, deaths_title, *_ = title_num
deaths_title = {d("2022-09-23"): 9}.get(date, deaths_title)
genders = get_next_numbers(text, "(หญิง|ชาย)", return_rest=False)
if genders and date != d("2021-08-09"):
male, female, *_ = genders
if get_next_numbers(text, "ชาย", return_rest=False)[0] == female:
# They sometimes reorder them
male, female = female, male
female = 8 if date == d("2022-01-29") else female
if date in [d("2021-09-11"), d("2022-01-14"), d("2022-04-08"), d("2022-04-26")]:
pass
else:
assert male + female == deaths_title
else:
male, female = None, None
numbers, *_ = get_next_numbers(text, "ค่ากลางระยะเวลา")
if numbers:
period_death_med, period_death_max, *_ = numbers
text = re.sub(r"([\d]+wk)", "", text) # remove 20wk pregnant
diseases = {
"Hypertension": ["ความดันโลหิตสูง", "HT", "ความดันโลหิตสงู"],
"Diabetes": ["เบาหวาน", "DM"],
"Hyperlipidemia": ["ไขมันในเลือดสูง", "HPL"],
"Lung disease": ["โรคปอด"],
"Obesity": ["โรคอ้วน", "อ้วน", "อ1วน", "อUวน"],
"Cerebrovascular": ["หลอดเลือดสมอง"],
"Kidney disease": ["โรคไต"],
"Heart disease": ["โรคหัวใจ", "หัวใจ"],
"Bedridden": ["ติดเตียง"],
"Cancer": ["มะเร็ง"],
"Pregnant": ["ตั้งครรภ์"],
"None": ["ไม่มีโรคประจ", "ปฏิเสธโรคประจ าตัว", "ไม่มีโรคประจ าตัว", "ไม่มีประวัตโิรคเรือ้รงั", "ไม่มี"],
# ไม่มีประวัตโิรคเรือ้รงั 3 ราย (2% - 2021-09-15 - only applies under 60 so not exactly the same number
}
text = text.replace("(BMI>30 kg/m2)", "")
def find_com(thdiseases):
num = get_next_number(text, *thdiseases, default=np.nan, return_rest=False, until=r"\)", require_until=True)
return num if num <= deaths_title else np.nan
comorbidity = {
disease: find_com(thdiseases)
for disease, thdiseases in diseases.items()
}
if date in [d("2021-8-10"), d("2021-09-23"), d("2021-11-22"), d("2021-12-10"), d("2022-01-03"), d("2022-01-17"), d("2022-02-27")]:
# comorbidities don't add to more than deaths
pass
elif date < d("2021-02-28"): # Give up. It's not anywhere near covering the deaths now
cm_sum = sum([n for n in comorbidity.values() if n is not np.nan])
assert cm_sum >= deaths_title, f"Potentially Missing comorbidity {comorbidity}\n{text}"
# deaths over 60
if date > d("2021-08-02"):
deaths_60 = get_next_number(text, r"60\s*(?:ปีขึ้นไป|ปีข้ึนไป|ป9ขึ้นไป|ปขึ้นไป|ป\)ข้ึนไป)",
return_rest=False, dash_as_zero=True)
assert deaths_60 is not None
else:
deaths_60 = np.nan
# deaths under 60
numbers, rest = get_next_numbers(text.replace("\n-", ""), "อายุน้อยกว่า 60", "อายุต่ ากว่า 60",
"อยกว:า 60", return_rest=True, dash_as_zero=True)
if numbers:
no_comorbid = comorbidity['None']
comorbidity['None'] = np.nan
if len(numbers) == 2 and "รคเรื้อรัง" in rest:
# Just chronic disease under 60 2021-12-30
under_60_disease, *_ = numbers
under_60_none = 0
else:
under_60_disease, _, under_60_none, _, *_ = numbers # also preganancy
# assert no_comorbid is np.nan or no_comorbid == under_60_none
else:
under_60_disease, under_60_none = np.nan, np.nan
if date >= d("2021-08-08"):
assert under_60_disease != np.nan
risks = {
"Family": ["สัมผัสญาติติดเชื้อมาเยี่ยม", "ครอบคร"],
"Others": ["คนอ่ืนๆ", "คนรู้จัก", "คนรู1จัก", "คนอื่น", "คนรู้จัก"],
"Residence": ["อาศัย "], # 2021-09-23 seperated ติดเชื้อในพื้นที่ (location)
"Location": [
"อาศัย/ไปพื้นที่ระบาด", "อาศัย/ไปพื้นทีร่ะบาด",
"อาศัย/เดินทางเข้าไปในพื้นที่ระบาด", "ในพื้นท่ี", "มาจากจังหวัดเสี่ยง", "อาศัยพื้นที่ระบาด",
"พ้ืนที่ระบาด", "ติดเชื้อในพื้นที่", "พื้นที่ระบาด"
], # Live/go to an epidemic area
"Crowds": [
"ไปที่แออัด", "ไปท่ีแออัด", "ไปสถานที่แออัดพลุกพลา่น", "เข้าไปในสถานที่แออัดพลุกพลา่น",
"ไปสถานที่แออัดพลุกพล่าน", "ไปสถานที่คนแออัด",
], # Go to crowded places
"Work": ["อาชีพเ", "อาชีพเสี", "HCW", "บุคลากรทางการแพทย์"], # Risky occupations inc health work
"Unknown": ["ระบุได้ไม่ชัดเจน", "ระบุไม่ชัดเจน", "ระบุไม่ได้"],
"Unvaccinated": ["ไม่เคยได้รับวัคซีน", "ไม่ครบตามเกณฑ์"],
"Close People": ["อจากคนใก"],
"Risk Area": ["จาก.นที่เสี่ยง", "จากพื้นที่เสี่ยง", "จังหวัดสีแดงเข้ม"],
"Bangkok": ["จากกทม./?ปริมณฑล"],
"Outside Hospital": ["เสียชีวิตนอกรพ", "เสียชีวิตที่บ้าน"],
"Prison": ["เรือนจ า"],
}
risk = {
en_risk: get_next_number(text, *th_risks, default=np.nan, return_rest=False, dash_as_zero=True)
for en_risk, th_risks in risks.items()
}
# TODO: Get all bullets and fuzzy match them to categories
#assert sum(risk.values()) >= deaths_title, f"Missing risks {risk}\n{text}"
# risk_family, _ = get_next_number(text, "คนในครอบครัว", "ครอบครัว", "สัมผัสญาติติดเชื้อมาเยี่ยม", default=0)
# TODO: <= 2021-04-30. there is duration med, max and 7-21 days, 1-4 days, <1
# "ค่ากลางระยะเวลา (วันที่ทราบผลติดเชื้อ – เสียชีวิต) 9 วัน (นานสุด 85 วัน)"
# TODO: "เป็นผู้ที่ได้วัคซีน AZ 1 เข็ม 7 ราย และไม่ระบุชนิด 1 เข็ม 1 ราย" <- vaccinated deaths
# TODO: deaths at home - "เสียชีวิตที่บ้าน 1 ราย จ.เพชรบุรี พบเชื้อหลังเสียชีวิต"
# TODO: what if they have more than one page?
risk_cols = [f"Deaths Risk {r}" for r in risk.keys()]
cm_cols = [f"Deaths Comorbidity {cm}" for cm in comorbidity.keys()]
row = pd.DataFrame(
[[date, deaths_title, med_age, min_age, max_age, male, female] + list(risk.values())
+ list(comorbidity.values()) + [under_60_disease, under_60_none, deaths_60]],
columns=[
"Date", "Deaths", "Deaths Age Median", "Deaths Age Min", "Deaths Age Max", "Deaths Male", "Deaths Female"
] + risk_cols + cm_cols + ["Deaths Risk Under 60 Comorbidity ", "Deaths Risk Under 60 Comorbidity None", "Deaths Risk Over 60"]).set_index("Date")
logger.info("{} Deaths: {}", date.date(), row.to_string(header=False, index=False), file)
return row
def briefing_deaths_cells(cells, date, all):
rows = []
for cell in cells:
lines = [line for line in cell.split("\n") if line.strip()]
if "รายละเอียดผู้เสีย" in lines[0]:
lines = lines[1:]
rest = '\n'.join(lines)
death_num, rest = get_next_number(rest, "รายที่", "รายที", remove=True)
age, rest = get_next_number(rest, "อายุ", "ผู้ป่ว", remove=True)
num_2ndwave, rest = get_next_number(rest, "ระลอกใหม่", remove=True)
numbers, _ = get_next_numbers(rest, "")
if age is not None and death_num is not None:
pass
elif age:
death_num, *_ = numbers
elif death_num:
age, *_ = numbers
else:
death_num, age, *_ = numbers
assert 1 < age < 110
assert 55 < death_num < 1500
gender = parse_gender(cell)
match = re.search(r"ขณะป่วย (\S*)", cell) # TODO: work out how to grab just province
if match:
prov = match.group(1).replace("จังหวัด", "")
province = get_province(prov)
else:
# handle province by itself on a line
p = [get_province(word, True) for line in lines[:3] for word in line.split()]
p = [pr for pr in p if pr]
if p:
province = p[0]
else:
# raise Exception(f"no province found for death in: {cell}")
province = "Unknown"
rows.append([float(death_num), date, gender, age, province, None, None, None, None, None])
df = \
pd.DataFrame(rows, columns=['death_num', "Date", "gender", "age", "Province", "nationality",
"congenital_disease", "case_history", "risk_factor_sickness",
"risk_factor_death"]).set_index("death_num")
return pd.concat([all, df], verify_integrity=True)
def briefing_deaths_table(orig, date, all):
"""death details per quadrant or page, turned into table by camelot"""
df = orig.drop(columns=[0, 10])
df.columns = ['death_num', "gender", "nationality", "age", "Province",
"congenital_disease", "case_history", "risk_factor_sickness", "risk_factor_death"]
df['death_num'] = pd.to_numeric(df['death_num'], errors="coerce")
df['age'] = pd.to_numeric(df['age'], errors="coerce")
df = df.dropna(subset=["death_num"])
df['Date'] = date
df['gender'] = df['gender'].map(parse_gender) # TODO: handle misspelling
df = df.set_index("death_num")
df = join_provinces(df, "Province")
all = pd.concat([all, df], verify_integrity=True)
# parts = [l.get_text() for l in soup.find_all("p")]
# parts = [l for l in parts if l]
# preamble, *tables = split(parts, re.compile("ปัจจัยเสี่ยงการ").search)
# for header,lines in pairwise(tables):
# _, *row_pairs = split(lines, re.compile("(\d+\s*(?:ชาย|หญิง))").search)
# for first, rest in pairwise(row_pairs):
# row = ' '.join(first) + ' '.join(rest)
# case_num, age, *dates = get_next_numbers("")
# print(row)
return all
def briefing_deaths(file, date, pages):
# Only before the 2021-04-29
all = pd.DataFrame()
for i, soup in enumerate(pages):
text = soup.get_text()
sum = briefing_deaths_summary(text, date, file)
# Latest version of deaths. Only gives summary info
dfprov = briefing_deaths_provinces(text, date, file)
if not sum.empty:
return all, sum, dfprov
if "วิตของประเทศไทย" not in text:
continue
orig = None
if date <= d("2021-04-19"):
cells = [soup.get_text()]
else:
# Individual case detail for death
orig = camelot_cache(file, i + 1, process_background=True)
if len(orig.columns) != 11:
cells = [cell for r in orig.itertuples() for cell in r[1:] if cell]
else:
cells = []
if cells:
# Older style, not row per death
all = briefing_deaths_cells(cells, date, all)
elif orig is not None: # <= 2021-04-27
all = briefing_deaths_table(orig, date, all)
else:
raise Exception(f"Couldn't parse deaths {date}")
if all.empty:
logger.info("{}: Deaths: 0", date.date())
sum = \
pd.DataFrame([[date, 0, None, None, None, 0, 0]],
columns=["Date", "Deaths", "Deaths Age Median", "Deaths Age Min", "Deaths Age Max",
"Deaths Male", "Deaths Female"]).set_index("Date")
dfprov = pd.DataFrame(columns=["Date", "Province", "Deaths"]).set_index(["Date", "Province"])
else:
# calculate daily summary stats
med_age, min_age, max_age = all['age'].median(), all['age'].min(), all['age'].max()
g = all['gender'].value_counts()
male, female = g.get('Male', 0), g.get('Female', 0)
sum = \
pd.DataFrame([[date, male + female, med_age, min_age, max_age, male, female]],
columns=["Date", "Deaths", "Deaths Age Median", "Deaths Age Min", "Deaths Age Max",
"Deaths Male", "Deaths Female"]).set_index("Date")
logger.info("{} Deaths: {}", date.date(), sum.to_string(header=False, index=False))
dfprov = all[["Date", 'Province']].value_counts().to_frame("Deaths")
# calculate per province counts
return all, sum, dfprov
def briefing_atk(file, date, pages):
df = pd.DataFrame()
for i, soup in enumerate(pages):
text = soup.get_text()
if "ยอดตรวจ ATK" not in text:
continue
# remove all teh dates
while True:
found_date, text = find_thai_date(text, remove=True)
if found_date is None:
break
atk_tests, _, atk_tests_cum, atk_pos, _, atk_pos_cum, *_ = get_next_numbers(text, "ยอดตรวจ ATK", return_rest=False)
return pd.DataFrame([[date, atk_tests, atk_tests_cum, atk_pos, atk_pos_cum]],
columns=['Date', "Tests ATK Proactive", "Tests ATK Proactive Cum", "Pos ATK Proactive", "Pos ATK Proactive Cum"]).set_index("Date")
return df
@functools.lru_cache
def briefing_documents(check=False):
url = "http://media.thaigov.go.th/uploads/public_img/source/"
start = d("2021-01-13") # 12th gets a bit messy but could be fixed
end = today()
links = [f"{url}249764.pdf"] # named incorrectly
links += [f"{url}{f.day:02}{f.month:02}{f.year-1957}.pdf" for f in daterange(start, end, 1)]
# for file, text, briefing_url in web_files(*), dir="briefings"):
check = True
res = []
for link in reversed(list(links)):
date = file2date(link) if "249764.pdf" not in link else d("2021-07-24")
if USE_CACHE_DATA and date < today() - datetime.timedelta(days=MAX_DAYS):
break
def get_file(link=link):
try:
file, text, url = next(iter(web_files(link, dir="inputs/briefings", check=check)))
except StopIteration:
return None
return file
check = False # Only check first one, assume others never get updated
res.append((link, date, get_file))
return res
def get_cases_by_prov_briefings():
types = pd.DataFrame(columns=["Date", ]).set_index(['Date', ])
date_prov = pd.DataFrame(columns=["Date", "Province"]).set_index(['Date', 'Province'])
date_prov_types = pd.DataFrame(columns=["Date", "Province", "Case Type"]).set_index(['Date', 'Province'])
# deaths = import_csv("deaths", ["Date", "Province"], not USE_CACHE_DATA)
deaths = pd.DataFrame(columns=["Date", "Province"]).set_index(['Date', 'Province'])
vac_prov = pd.DataFrame(columns=["Date", "Province"]).set_index(['Date', 'Province'])
for briefing_url, date, get_file in briefing_documents(check=True):
file = get_file()
if file is None:
continue
if date in [d("2022-04-24")]:
# 2022-04-24: some kind of weird encoding.
# see - https://stackoverflow.com/questions/67551128/tika-compute-content-encoding-of-a-document
continue
pages = parse_file(file, html=True, paged=True)
pages = [BeautifulSoup(page, 'html.parser') for page in pages]
today_types = briefing_case_types(date, pages, briefing_url)
types = types.combine_first(today_types)
case_detail = briefing_case_detail(date, pages)
date_prov_types = date_prov_types.combine_first(case_detail)
prov = briefing_province_cases(file, date, pages)
atk = briefing_atk(file, date, pages)
each_death, death_sum, death_by_prov = briefing_deaths(file, date, pages)
# TODO: This should be redundant now with dashboard having early info on vac progress.
vac = pd.DataFrame()
for i, page in enumerate(pages):
text = page.get_text()
# Might throw out totals since doesn't include all prov
# vac_prov = vac_briefing_provs(vac_prov, date, file, page, text)
vac = vac_briefing_totals(vac, date, file, page, text, i)
vac = vac_briefing_groups(vac, date, file, page, text, i)
if date > d("2022-03-04") and date not in [d("2022-06-22"), d("2022-04-11"), d("2022-03-31")]:
assert vac.iloc[0]["Vac Group Over 60 1 Cum"] > 0
types = types.combine_first(vac)
if not today_types.empty:
wrong_deaths_report = date in [
d("2021-03-19"), # 19th was reported on 18th
d("2021-03-18"),
d("2021-03-17"), # 15th and 17th no details of death
d("2021-03-15"),
d("2021-02-24"), # 02-24 infographic is image
d("2021-02-19"), # 02-19 death details is graphic (the doctor)
d("2021-02-15"), # no details of deaths (2)
d("2021-02-10"), # no details of deaths (1)
d("2022-01-05"), # summary is 19 but prov is only 12.
] or date < d("2021-02-01") # TODO: check out why later
ideaths, ddeaths = today_types.loc[today_types.last_valid_index()]['Deaths'], death_sum.loc[
death_sum.last_valid_index()]['Deaths']
if date in [d("2021-08-27"), d("2021-09-10"), d("2022-01-14")]:
pass
elif date >= d("2022-07-09"):
pass # got rid of death summry from briefing
else:
assert wrong_deaths_report or (ddeaths == ideaths), f"Death details {ddeaths} didn't match total {ideaths}"
deaths = pd.concat([deaths, each_death], verify_integrity=True)
date_prov = date_prov.combine_first(death_by_prov)
types = types.combine_first(death_sum).combine_first(atk)
date_prov = date_prov.combine_first(prov)
# Do some checks across the data
today_total = today_types[['Cases Proactive', "Cases Walkin"]].sum().sum()
prov_total = prov.groupby("Date").sum()['Cases'].loc[date] if not prov.empty else None
warning = f"briefing provs={prov_total}, cases={today_total}"
if today_total and prov_total:
assert prov_total / today_total > 0.77, warning # 2021-04-17 is very low but looks correct
if today_total != prov_total:
logger.info("{} WARNING: {}", date.date(), warning)
# if today_total / prov_total < 0.9 or today_total / prov_total > 1.1:
# raise Exception(f"briefing provs={prov_total}, cases={today_total}")
# Phetchabun 1.0 extra
# ขอนแกน่ 12 missing
# ชุมพร 1 missing
export(deaths, "deaths")
if not date_prov_types.empty:
symptoms = date_prov_types[["Cases Symptomatic", "Cases Asymptomatic"]] # todo could keep province breakdown
symptoms = symptoms.groupby(['Date']).sum()
types = types.combine_first(symptoms)
date_prov_types = date_prov_types[["Case Type", "Cases"]]
# we often have multiple walkin events
date_prov_types = date_prov_types.groupby(['Date', 'Province', 'Case Type']).sum()
date_prov_types = date_prov_types.reset_index().pivot(index=["Date", "Province"], columns=['Case Type'])
date_prov_types.columns = [f"Cases {c}" for c in date_prov_types.columns.get_level_values(1)]
date_prov = date_prov.combine_first(date_prov_types)
# Since Deaths by province doesn't list all provinces, ensure missing are 0
date_prov['Deaths'] = date_prov['Deaths'].unstack(fill_value=0).fillna(0).stack(dropna=False)
return date_prov, types
def vac_briefing_totals(df, date, file, page, text, i):
if not re.search("(รายงานสถานการณ์|ระลอกใหม่ เมษายน ประเทศไทย ตั้งแต่วันที่)", text):
return df
if not re.search("(ผู้รับวัคซีน|ผูรั้บวัคซีน)", text):
return df
# Vaccines
numbers, rest = get_next_numbers(text, "ผู้รับวัคซีน", "ผูรั้บวัคซีน")
if not numbers:
return df
rest, *_ = rest.split("หายป่วยแล้ว")
# the reason there's no data for 2021-9-24 is that over 1 million doses were
# given and they couldn't tabulate the data in time for briefing of 2021-9-25:
# "ข้อมูลการให้บริการวัคซีนวันที่ 24 ก.ย. 64 อยู่ระหว่างตรวจสอบข้อมูล เนื่องจากมีผู้เข้ามารับวัคซีน มากกว่า 1 ล้านโดส"
if d("2021-9-25") <= date < d("2021-10-01"):
# use numpy's Not a Number value to avoid breaking the plots with 0s
total = np.nan
cums = daily = [np.nan, np.nan, np.nan]
else:
total, _ = get_next_number(rest, "ฉีดแล้ว", "ฉีดแลว้", until="โดส")
daily = [int(d.replace(",", "")) for d in re.findall(r"\+([\d,]+) *ราย", rest)]
# on the first date that fourth doses were reported, 0 daily doses were
# displayed despite there suddenly being 800 cumulative fourth doses:
cums = [int(d.replace(",", "")) for d in re.findall(r"สะสม *([\d,]+) *ราย", rest)]
if date in [d("2021-09-28")]:
cums[0] = 31811342 # mistype. 31,8,310 - https://twitter.com/thaimoph/status/1442771132717797377
if total:
assert 0.99 <= sum(cums) / total <= 1.01
else:
total = sum(cums)
assert len(cums) == len(daily)
# data on fourth doses was added starting with briefing of the 26th
assert len(cums) < 5
# We need given totals to ensure we use these over other api given totals
row = [date - datetime.timedelta(days=1), sum(daily), total] + daily + cums + [file]
columns = ["Date", "Vac Given", "Vac Given Cum"]
columns += [f"Vac Given {d}" for d in range(1, len(daily) + 1)]
columns += [f"Vac Given {d} Cum" for d in range(1, len(cums) + 1)]
columns += ["Source Vac Given"]
vac = pd.DataFrame([row], columns=columns).set_index("Date")
if not vac.empty:
logger.info("{} Vac: {}", date.date(), vac.to_string(header=False, index=False))
df = df.combine_first(vac)
return df
def vac_briefing_groups(df, date, file, page, text, i):
if not re.search("(ที่มีอายุ 60|ผู้ทีม่ีอายุ 60|ผู้ที่มีอาย ุ60)", text): # ผู้ทีม่ีอายุ 60
return df
over60x3, studentx3 = [
[f"Vac Group {g} {d} Cum" for d in range(1, 4)] for g in ["Over 60", "Student"]
]
date = date - datetime.timedelta(days=1)
# # Order keeps changing so get all numbers and sort them
# numbers = get_next_numbers(text.replace("5 – 11", "").replace("อาย ุ60", ""), "โดส", until="Immunization Center", ints=False, return_rest=False, dash_as_zero=True)
# assert len(numbers) == 14
# # get rid of %
# numbers = [n for n in numbers if n > 100]
# pop, d1, d2, d3 = sorted(numbers[:4], reverse=True)
# spop, sd1, sd2, sd3 = sorted(numbers[4:], reverse=True)
# # Vaccines
numbers = get_next_numbers(text, "5 – 11", ints=False, return_rest=False, dash_as_zero=True)
if len(numbers) >= 6:
# Sometimes totals are first and sometimes intermixed with percentages
spop, sd1, sd2, sd3, *rest = [n for n in numbers if n == 0 or n > 100]
numbers = get_next_numbers(text, "ที่มีอายุ 60", "ผู้ทีม่ีอายุ 60", ints=False, return_rest=False)
pop, d1, d2, d3, *rest = [n for n in numbers if n == 0 or n > 100]
else:
table = camelot_cache(file, i + 1, process_background=True)
numbers = get_next_numbers(table.iloc[3][0], "5 – 11", ints=False, return_rest=False, dash_as_zero=True)
sd1, sd2, sd3, spop, *rest = numbers
numbers = get_next_numbers(table.iloc[1][0], "60", ints=False, return_rest=False, dash_as_zero=True)
d1, d2, d3, pop, *rest = numbers
sd2 = 1474129 if date == d("2022-05-24") else sd2
assert pop > d1 > d2 > d3
assert spop > sd1 > sd2 > sd3
over60 = pd.DataFrame([[date, d1, d2, d3]], columns=["Date"] + over60x3).set_index("Date")
student = pd.DataFrame([[date, sd1, sd2, sd3]], columns=["Date"] + studentx3).set_index("Date")
df = df.combine_first(over60).combine_first(student)
return df