-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwspr-reports.py
138 lines (113 loc) · 5.09 KB
/
wspr-reports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import io
import requests
import statistics
import numpy as np
import pandas as pd
from bisect import bisect
WSPR_HEADER_ERR = "Your wspr file cannot be missing or have spaces in the data headers that defaults from wsprnet.org"
def open_wspr_file():
#open the wspr data into a dataframe and add a clean timestamp column
df = pd.read_csv("wspr.txt", sep='\t')
return (df)
def open_goes_xray_file():
#open the GOES satellite 6-hour xray flux data
dfx = pd.read_json('xrays-6-hour.json')
dfx = dfx.iloc[::2]
dfx = dfx.rename(columns={'time_tag':'Timestamp'})
dfx.flux = dfx.flux.apply(float).round(12)
dfx['modflux'] = dfx['flux'] * 1e8
return(dfx)
def join_wspr_with_goes(df, dfx):
#join the GOES satellite 6-hour xray flux data with the wspr data and return join
df = pd.merge(df, dfx, on='Timestamp', how='inner').reset_index()
#print ("\n\nGOES data - first rows: ")
#print (df.head(5))
#input("Saving full wspr-goes-data.csv - press Enter to continue...")
df.to_csv("wspr-goes-data.csv")
return(df)
def add_wspr_dimensions(df):
if 'Timestamp' in df.columns:
df['Timestamp'] = df['Timestamp'].str.strip()
df['Time'] = df['Timestamp'].str[-5:]
df['Timestamp'] = df['Timestamp'].str.replace(" ", "T") +":00Z"
df['Reporter'] = df['Reporter'].str.strip()
df['map'] = pd.cut(df['az'], [0, 23, 68, 113, 158, 203, 248, 293, 337, 359], labels= ['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW', 'N'], ordered=False)
df['drange'] = pd.cut(df['km'], [0, 800, 4000, 8000, 13000], labels=['NEAR', 'MID', 'LONG', 'VLONG'])
df = df.sort_values('Timestamp').reset_index()
print ("\n\nWSPR and GOES joined data - first rows: ")
print (df.head(7) ) #+ "\n\n")
input("Press Enter to continue...")
#print (df.loc[(df['map'] == 'NW') & (df['drange'] == 'MID')])
return(df)
else:
print ("\n" + WSPR_HEADER_ERR)
def get_wspr_snr_trends(df):
slopes = []
stdvs = []
variances = []
maps = []
df2 = df.groupby(['map', 'km', 'Reporter'])['SNR'].describe()
print ("\n\nWSPR mean and std dev of SNRs by map direction from your callsign location: ")
print (df2.to_string() + "\n\n")
df2.to_csv("wspr-map-trends.csv")
input("Saving wspr-map-trends.csv - press Enter to continue...")
df2 = df2.reset_index()
df2 = df.groupby(['km', 'Reporter']).agg({'SNR':list}).reset_index()
for index, row in df2.iterrows():
if len(row['SNR']) > 2: #only calculate for 3 or more reports from the same reporter
s = list(range(len(row['SNR'])))
slope, intercept = statistics.linear_regression(s, row['SNR'])
stdv = statistics.stdev(row['SNR'])
variance = statistics.variance(row['SNR'])
else:
slope = 0
stdv = 0
variance = 0
#slopes.append("{:.2f}".format(slope))
slopes.append(round(float(slope), 2))
stdvs.append("{:.2f}".format(stdv))
variances.append(round(float(variance), 1))
maps.append(df.loc[(df['Reporter'] == row['Reporter'])].iloc[0]['map'])
df2['slope'] = slopes
df2['stdv'] = stdvs
df2['variance'] = variances
df2['map'] = maps
print ("\n\nTrending slopes and std dev of SNRs by distance of Reporting callsign: ")
print (df2.to_string())
input("Saving wspr-trends-distance.csv - press Enter to continue...")
df2.to_csv("wspr-trends-distance.csv")
df2 = df2.reset_index()
df3 = df.groupby(['km', 'Reporter']).agg({'flux':list}).reset_index()
#print ("\n\nGOES flux by Reporting callsign: ")
#print (df3.to_string() + "\n\n")
#input("Press Enter to continue...")
print ("\n\nSNR trending slopes by map direction from your callsign location: ")
df4 = df2.groupby('map').agg({'slope':list}).reset_index()
df4['snr trend'] = [np.array(x).mean() for x in df4.slope.values]
#df2['var mean'] = [np.array(x).mean() for x in df2.variance.values]
print (df4.to_string() + "\n\n")
df4.to_csv("wspr-trends-by-azimuth.csv")
input("Saving wspr-trends-by-azimuth.csv - press Enter to continue...")
print ("\n\nSNR variances by map direction from your callsign location: ")
df5 = df2.groupby('map').agg({'variance':list}).reset_index()
df5['var trend'] = [np.array(x).mean() for x in df5.variance.values]
print (df5.to_string() + "\n\n")
def main():
try:
#Read wspr data from wsprnet.org
df = open_wspr_file()
#Add columns of data and normalize timestamps
df = add_wspr_dimensions(df)
#Read the GOES xray data
dfx = open_goes_xray_file()
#Inner join the wspr and xray data and return join
df = join_wspr_with_goes(df, dfx)
#Determine if wspr signal strength is getting stronger or weaker (nust have at least 3 reports)
get_wspr_snr_trends(df)
except Exception as e:
print("Could not excute wspr-reports: ", repr(e))
#Version 0.0.1
if __name__ == '__main__':
main() # pylint: disable=no-value-for-parameter
#Saved queries
#print (df2.loc[(df2['map'] == 'SE') & (df2['km'] < 600)])