generated from dlibml/dlib-template-project
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvovnet.h
145 lines (124 loc) · 7.6 KB
/
vovnet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#ifndef VoVNet_H
#define VoVNet_H
#include <dlib/dnn.h>
namespace vovnet
{
// clang-format off
using namespace dlib;
// vov_tag0 is used for identity mapping
template <typename SUBNET> using vov_tag0 = add_tag_layer<5050, SUBNET>;
template <typename SUBNET> using vov_tag1 = add_tag_layer<5051, SUBNET>;
template <typename SUBNET> using vov_tag2 = add_tag_layer<5052, SUBNET>;
template <typename SUBNET> using vov_tag3 = add_tag_layer<5053, SUBNET>;
template <typename SUBNET> using vov_tag4 = add_tag_layer<5054, SUBNET>;
template <typename SUBNET> using vov_tag5 = add_tag_layer<5055, SUBNET>;
template <typename SUBNET> using id_mapping = add_prev<vov_tag0, SUBNET>;
template <template <typename> class ACT, template <typename> class BN>
struct def
{
// The concatenate layer with custom number of outputs for OSA Module with 3 layers
template <long num_filters, typename SUBNET>
using concatenate3 = ACT<BN<con<num_filters, 1, 1, 1, 1,
add_layer<concat_<vov_tag0, vov_tag1, vov_tag2, vov_tag3>, SUBNET>>>>;
// The concatenate layer with custom number of outputs for OSA Module with 5 layers
template <long num_filters, typename SUBNET>
using concatenate5 = ACT<BN<con<num_filters, 1, 1, 1, 1,
add_layer<concat_<vov_tag0, vov_tag1, vov_tag2, vov_tag3, vov_tag4, vov_tag5>, SUBNET>>>>;
// 1-padded 3x3 convolution with custom number of filters, kernel size and stride
template <long num_filters, int s, typename SUBNET>
using con3 = ACT<BN<add_layer<con_<num_filters, 3, 3, s, s, 1, 1>, SUBNET>>>;
// Max-pooling with 3x3 kernel size 2-stride and 1-padding
template <typename SUBNET> using maxpool = add_layer<max_pool_<3, 3, 2, 2, 1, 1>, SUBNET>;
// Stem block
template <typename INPUT>
using stem = con3<128, 2, con3<64, 1, con3<64, 2, INPUT>>>;
// The VoVNet effective Squeeze and Excitation Module
template <long num_filters, typename SUBNET>
using ese_module = scale_prev2<skip1<
tag2<sig<con<num_filters, 1, 1, 1, 1,
avg_pool_everything<
tag1<SUBNET>>>>>>>;
// The VoVNet One-Shot Aggregation Module with 3 inner layers
template <long num_filters_out, long num_filters_in, typename SUBNET>
using osa_module3 = ese_module<num_filters_out,
concatenate3<num_filters_out,
vov_tag3<con3<num_filters_in, 1,
vov_tag2<con3<num_filters_in, 1,
vov_tag1<con3<num_filters_in, 1,
vov_tag0<SUBNET>>>>>>>>>;
// The VoVNet One-Shot Aggregation Module with 5 inner layers
template <long num_filters_out, long num_filters_in, typename SUBNET>
using osa_module5 = ese_module<num_filters_out,
concatenate5<num_filters_out,
vov_tag5<con3<num_filters_in, 1,
vov_tag4<con3<num_filters_in, 1,
vov_tag3<con3<num_filters_in, 1,
vov_tag2<con3<num_filters_in, 1,
vov_tag1<con3<num_filters_in, 1,
vov_tag0<SUBNET>>>>>>>>>>>>>;
// some definitions to allow the use of the repeat layer
template <typename SUBNET> using osa_module5_id_512 = id_mapping<osa_module5<512, 160, SUBNET>>;
template <typename SUBNET> using osa_module5_id_768 = id_mapping<osa_module5<768, 192, SUBNET>>;
template <typename SUBNET> using osa_module5_id_1024 = id_mapping<osa_module5<1024, 224, SUBNET>>;
template <typename INPUT>
using backbone_19_slim = osa_module3<512, 112,
maxpool<osa_module3<384, 96,
maxpool<osa_module3<256, 80,
maxpool<osa_module3<112, 64,
stem<INPUT>>>>>>>>;
template <typename INPUT>
using backbone_19 = osa_module3<1024, 224,
maxpool<osa_module3<768, 192,
maxpool<osa_module3<512, 160,
maxpool<osa_module3<256, 128,
stem<INPUT>>>>>>>>;
template <typename INPUT>
using backbone_27_slim = osa_module3<512, 112,
maxpool<osa_module5<384, 96,
maxpool<osa_module5<256, 80,
maxpool<osa_module5<112, 64,
stem<INPUT>>>>>>>>;
template <typename INPUT>
using backbone_27 = osa_module3<1024, 224,
maxpool<osa_module5<768, 192,
maxpool<osa_module5<512, 160,
maxpool<osa_module5<256, 128,
stem<INPUT>>>>>>>>;
template <typename INPUT>
using backbone_39 = osa_module5_id_1024<osa_module5<1024, 224,
maxpool<osa_module5_id_768<osa_module5<768, 192,
maxpool<osa_module5<512, 160,
maxpool<osa_module5<256, 128,
stem<INPUT>>>>>>>>>>;
template <typename INPUT>
using backbone_57 = repeat<2, osa_module5_id_1024, osa_module5<1024, 224,
maxpool<repeat<3, osa_module5_id_768, osa_module5<768, 192,
maxpool<osa_module5<512, 160,
maxpool<osa_module5<256, 128,
stem<INPUT>>>>>>>>>>;
template <typename INPUT>
using backbone_99 = repeat<2, osa_module5_id_1024, osa_module5<1014, 224,
maxpool<repeat<8, osa_module5_id_768, osa_module5<768, 192,
maxpool<repeat<2, osa_module5_id_512, osa_module5<512, 160,
maxpool<osa_module5<256, 128,
stem<INPUT>>>>>>>>>>>;
};
template <long num_filters, typename SUBNET>
using classification_head = loss_multiclass_log<fc<num_filters, avg_pool_everything<SUBNET>>>;
using train_19_slim = classification_head<1000, def<relu, bn_con>::backbone_19_slim<input_rgb_image>>;
using infer_19_slim = classification_head<1000, def<relu, affine>::backbone_19_slim<input_rgb_image>>;
using train_19 = classification_head<1000, def<relu, bn_con>::backbone_19<input_rgb_image>>;
using infer_19 = classification_head<1000, def<relu, affine>::backbone_19<input_rgb_image>>;
using train_27_slim = classification_head<1000, def<relu, bn_con>::backbone_27_slim<input_rgb_image>>;
using infer_27_slim = classification_head<1000, def<relu, affine>::backbone_27_slim<input_rgb_image>>;
using train_27 = classification_head<1000, def<relu, bn_con>::backbone_27<input_rgb_image>>;
using infer_27 = classification_head<1000, def<relu, affine>::backbone_27<input_rgb_image>>;
using train_39 = classification_head<1000, def<relu, bn_con>::backbone_39<input_rgb_image>>;
using infer_39 = classification_head<1000, def<relu, affine>::backbone_39<input_rgb_image>>;
using train_57 = classification_head<1000, def<relu, bn_con>::backbone_57<input_rgb_image>>;
using infer_57 = classification_head<1000, def<relu, affine>::backbone_57<input_rgb_image>>;
using train_99 = classification_head<1000, def<relu, bn_con>::backbone_99<input_rgb_image>>;
using infer_99 = classification_head<1000, def<relu, affine>::backbone_99<input_rgb_image>>;
// clang-format on
} // namespace vovnet
#endif // VoVNet_H