-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest.py
149 lines (129 loc) · 6.18 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import sys
import argparse
import numpy as np
from utils import build_model
from test_utils import generate_test_data
NUM_FRAMES_PER_EXAMPLE = 40
FRAME_HEIGHT = 64
FRAME_WIDTH = 64
NUM_RGB_CHANNELS = 3
NUM_FLOW_CHANNELS = 2
RGB_TOTAL_NUM_TEST_VIDEO_FRAMES = 10798
RGB_NUM_TEST_EXAMPLES = RGB_TOTAL_NUM_TEST_VIDEO_FRAMES - NUM_FRAMES_PER_EXAMPLE + 1
FLOW_TOTAL_NUM_TEST_VIDEO_FRAMES = 10797
FLOW_NUM_TEST_EXAMPLES = FLOW_TOTAL_NUM_TEST_VIDEO_FRAMES - NUM_FRAMES_PER_EXAMPLE + 1
batch_size = 16
rgb_video_path = 'data/test.mp4'
flow_video_path = 'data/flow_test.mp4'
prediction_save_path = 'test_predictions.txt'
def main(args):
if args.eval_type == 'joint' and (args.rgb_weights_path is None or args.flow_weights_path is None):
print('ERROR: when using `joint` model evaluation type, '
'you must specify path to RGB and Optical flow weights respectively.')
print('Exiting...')
return
elif args.eval_type == 'rgb' and args.rgb_weights_path is None:
print('ERROR: when using only `rgb` model evaluation type, '
'you must specify path to RGB weights.')
print('Exiting...')
return
elif args.eval_type == 'flow' and args.flow_weights_path is None:
print('ERROR: when using only `flow` model evaluation type, '
'you must specify path to Optical Flow weights.')
print('Exiting...')
# define rgb model, load trained weights and evaluate test samples
if args.eval_type in ['joint', 'rgb']:
print('\nprocessing RGB video')
print('path: %s' % rgb_video_path)
rgb_model = build_model(NUM_FRAMES_PER_EXAMPLE, FRAME_HEIGHT, FRAME_WIDTH,
NUM_RGB_CHANNELS, base_model_weights=None, freeze_base=False)
rgb_model.load_weights(args.rgb_weights_path)
# define data generator
rgb_generator = generate_test_data(rgb_video_path, NUM_FRAMES_PER_EXAMPLE,
batch_size, two_channels_frame=False)
# evaluate
if RGB_NUM_TEST_EXAMPLES % batch_size == 0:
num_batches = RGB_NUM_TEST_EXAMPLES // batch_size
else:
num_batches = (RGB_NUM_TEST_EXAMPLES // batch_size) + 1
rgb_predictions = []
step = 0
while True:
X_test = next(rgb_generator)
preds = rgb_model.predict(X_test)
rgb_predictions += preds.reshape((preds.shape[0],)).tolist()
step += 1
sys.stdout.write('num of batches processed: %d of %d\r' % (step, num_batches))
if step >= num_batches:
break
rgb_predictions = np.asarray(rgb_predictions, dtype=np.float32)
# define optical flow model, load trained weights and evaluate test samples
if args.eval_type in ['joint', 'flow']:
print('\n\nprocessing Optical Flow video')
print('path: %s' % flow_video_path)
flow_model = build_model(NUM_FRAMES_PER_EXAMPLE, FRAME_HEIGHT, FRAME_WIDTH,
NUM_FLOW_CHANNELS, base_model_weights=None, freeze_base=False)
flow_model.load_weights(args.flow_weights_path)
# define data generator
flow_generator = generate_test_data(flow_video_path, NUM_FRAMES_PER_EXAMPLE,
batch_size, two_channels_frame=True)
# evaluate
if FLOW_NUM_TEST_EXAMPLES % batch_size == 0:
num_batches = FLOW_NUM_TEST_EXAMPLES // batch_size
else:
num_batches = (FLOW_NUM_TEST_EXAMPLES // batch_size) + 1
flow_predictions = []
step = 0
while True:
X_test = next(flow_generator)
preds = flow_model.predict(X_test)
flow_predictions += preds.reshape((preds.shape[0],)).tolist()
step += 1
sys.stdout.write('num of batches processed: %d of %d\r' % (step, num_batches))
if step >= num_batches:
break
flow_predictions = np.asarray(flow_predictions, dtype=np.float32)
if args.eval_type == 'rgb':
model_predictions = rgb_predictions
elif args.eval_type == 'flow':
# flow examples are one less than rgb examples
# therefore, duplicate the first flow prediction
# so that number of predictions is same as rgb examples
model_predictions = np.zeros_like(flow_predictions.shape[0] + 1, dtype=np.float32)
model_predictions[1:] = flow_predictions[:]
model_predictions[0] = flow_predictions[0]
else:
model_predictions = np.zeros_like(rgb_predictions, dtype=np.float32)
# combine rgb prediction and flow prediction
model_predictions[1:] = (rgb_predictions[1:] + flow_predictions[:]) / 2.0
model_predictions[0] = (rgb_predictions[0] + flow_predictions[0]) / 2.0
# save predictions
f = open(prediction_save_path, 'w')
# use the first prediction in `model_predictions`
# as the predictions for the first 39 frames in test video
# since we started generating examples from the 40th frame onwards
for _ in range(39):
f.write('{0}\n'.format(model_predictions[0]))
# save the predictions that starts from the 40th frame onwards
for prediction in model_predictions:
f.write('{0}\n'.format(prediction))
f.close()
print('\nprediction generation completed')
print('prediction output file: %s' % prediction_save_path)
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('eval_type',
help='strategy to evaluate test data. '
'if `joint`, you must provide weights path for both rgb and flow. '
'if `rgb`, you must provide weights path for rgb. '
'if `flow`, you must provide weights path for flow. ',
type=str,
choices=['joint', 'rgb', 'flow'])
parser.add_argument('-r', '--rgb-weights-path',
help='path to weights for RGB model',
type=str)
parser.add_argument('-f', '--flow-weights-path',
help='path to weights for flow model',
type=str)
main(parser.parse_args())