-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_gan.py
328 lines (295 loc) · 12.3 KB
/
test_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import imageio.v3 as iio
import os
import random
import numpy as np
import torch
import configs.gan as conf
from datasets.displacement_datasets import DisplacementDataset
from data_processing.strain_calc import calc_and_concat_strains
from gan import gans
from gan.noise_vec_interpolation import interpolate_noise_vectors
from metrics import swd, ssim, ms_ssim, geometry_score
import metrics.gs as gs
import plot.data as plt_d
import plot.metrics as plt_m
##########################
# Define global variables:
##########################
if conf.seed is not None:
print(f"Using manual seed ({conf.seed}).")
torch.manual_seed(conf.seed)
random.seed(conf.seed)
np.random.seed(conf.seed)
print("Defining global variables...")
DATA_PATH = os.path.join("data", "training_data.pt")
MODEL_PATH = os.path.join("models", "GANs", "Test")
MODEL_FOLDER = "EPOCHS2_BATCHS8_DISCDCGANDiscriminator_GENUpsampleGenerator_ACTrelu_UPMODEnearest_ND5_S1LAST_LOSSGANLoss_TYPEvanilla_LLOSS1.0_OPTDISCAdam_OPTGENAdam_0"
MODEL_FOLDER = os.path.join(MODEL_PATH, MODEL_FOLDER)
SAVE_FOLDER = MODEL_FOLDER
SCALING = "minmax"
####################
# Define dataset:
####################
print("Defining dataloader...")
dataset = DisplacementDataset([DATA_PATH], scaling=SCALING)
real_data = dataset.data
real_data_normalized = dataset.transforms(dataset.data)
###########
# Load GAN:
###########
print("Loading GAN...")
# checkpoint_path = os.path.join(MODEL_FOLDER, 'checkpoints', 'Epoch10')
checkpoint_path = MODEL_FOLDER
gan_state_dict = torch.load(
os.path.join(checkpoint_path, "gan_state_dict.pt"), map_location=conf.device
)
my_gan = gans.load_gan_model_by_folder(
MODEL_FOLDER, gan_state_dict=gan_state_dict, device=conf.device
)
##################
# Load statistics:
##################
print("Loading losses...")
losses_disc = torch.load(
os.path.join(checkpoint_path, "losses_disc.pt")
) # Dict['epoch'][epoch_number] is list
mean_losses_disc = torch.stack(
[torch.stack(epoch_list).mean() for epoch_list in losses_disc["epoch"].values()]
)
losses_gen = torch.load(os.path.join(checkpoint_path, "losses_gen.pt"))
mean_losses_gen = torch.stack(
[torch.stack(epoch_list).mean() for epoch_list in losses_gen["epoch"].values()]
)
print("Loading discriminator outputs...")
outputs_disc = torch.load(os.path.join(checkpoint_path, "outputs_disc.pt"))
mean_outputs_disc_real = torch.stack(
[
torch.stack(epoch_list["real"]).mean()
for epoch_list in outputs_disc["epoch"].values()
]
)
mean_outputs_disc_fake = torch.stack(
[
torch.stack(epoch_list["fake"]).mean()
for epoch_list in outputs_disc["epoch"].values()
]
)
mean_outputs_disc_fake_2 = torch.stack(
[
torch.stack(epoch_list["fake_2"]).mean()
for epoch_list in outputs_disc["epoch"].values()
]
)
print("Loading fake data list...")
fake_data_list = torch.load(os.path.join(checkpoint_path, "fake_data_list.pt"))
fake_data_list[:, :, 2] = (
fake_data_list[:, :, 2] * 100
) # Convert to vonMises strains to %
print("Plotting fake data as animation and saving as gif...")
plt_d.plot_batch_animation(
fake_data_list,
save_folder=MODEL_FOLDER,
filename="fake_data_list",
minmax=((-0.1, 0.1), (-0.2, 0.2)),
minmax_strain=(0.0, 0.2),
ax_titles=("$u_x$\,[mm]", "$u_y$\,[mm]", "$\\varepsilon_\\mathrm{vm}$\,[\%]"),
figsize=(6, 3),
colorbar_padding=0.02,
ncols=4,
)
print("Saving animation as mp4...")
gif_org = iio.imread(os.path.join(MODEL_FOLDER, "fake_data_list.gif"), index=None)
iio.imwrite(os.path.join(MODEL_FOLDER, "fake_data_list.mp4"), gif_org, fps=10)
print("Saved animation as mp4.")
#####################
# Generate fake data:
#####################
print("Generating fake data...")
noise_vec = torch.randn(9, my_gan.generator.noise_dim, device=conf.device)
with torch.no_grad():
fake_data = my_gan.generator(noise_vec).cpu()
fake_data_w_eps = calc_and_concat_strains(
dataset.unnormalize_data(fake_data), "vonMises"
)
fake_data_w_eps[:, 2] = fake_data_w_eps[:, 2] * 100 # Convert von-Mises strains to %
real_data_w_eps = calc_and_concat_strains(real_data, "vonMises")
real_data_w_eps[:, 2] = real_data_w_eps[:, 2] * 100 # Convert von-Mises strains to %
plt_d.plot_batch(
fake_data_w_eps,
save_folder=MODEL_FOLDER,
filename=f"fake_batch_seed_{conf.seed}",
minmax=((-0.1, 0.1), (-0.2, 0.2)),
minmax_strain=(0.0, 0.2),
ax_titles=("$u_x$\,[mm]", "$u_y$\,[mm]", "$\\varepsilon_\\mathrm{vm}$\,[\%]"),
figsize=(6, 8),
colorbar_padding=0.02,
ncols=3,
cmap="coolwarm",
)
##########################
# Plot real vs. fake data:
##########################
idc = torch.randint(low=0, high=real_data_w_eps.shape[0], size=(9,))
# plt_d.plot_real_vs_fake(real_data_w_eps[idc], fake_data_w_eps,
# save_folder=MODEL_FOLDER,
# filename='real_batch',
# minmax=((-0.1, 0.1), (-0.2, 0.2)), minmax_strain=(0.0, 0.2),
# ax_titles=(('Real $\\varepsilon_\\mathrm{vm}$\,[\%]', 'Fake $\\varepsilon_\\mathrm{vm}$\,[\%]'),
# ('Real $u_x$\,[mm]', 'Fake $u_x$\,[mm]'),
# ('Real $u_y$\,[mm]', 'Fake $u_y$\,[mm]')),
# figsize=(6, 8), colorbar_padding=0.02, ncols=4)
# Plot real data
plt_d.plot_batch(
real_data_w_eps[idc],
save_folder=MODEL_FOLDER,
filename=f"real_batch_seed_{conf.seed}",
minmax=((-0.1, 0.1), (-0.2, 0.2)),
minmax_strain=(0.0, 0.2),
ax_titles=("$u_x$\,[mm]", "$u_y$\,[mm]", "$\\varepsilon_\\mathrm{vm}$\,[\%]"),
figsize=(6, 8),
colorbar_padding=0.02,
ncols=3,
cmap="coolwarm",
)
################################################
# Interpolate between two noise vectors metrics:
################################################
# print("Interpolating between noise vectors...")
# n1 = torch.randn(1, my_gan.generator.noise_dim, device=conf.device)
# n2 = torch.randn(my_gan.generator.noise_dim, device=conf.device)
# vecs, gen_data = interpolate_noise_vectors(n1, n2, num=100, generator=my_gan.generator, device=conf.device)
# gen_data_w_eps = calc_and_concat_strains(gen_data, 'vonMises')
# real_data_w_eps[:, 2] = real_data_w_eps[:, 2]*100 # Convert to vonMises strains to %
# ani = plt_d.plot_batch_animation(gen_data_w_eps, save_folder=MODEL_FOLDER, filename='interp',
# title='Interpolation',
# minmax=((-0.1, 0.1), (-0.2, 0.2)), minmax_strain=(0.0, 0.2),
# ax_titles=('$u_x$\,[mm]', '$u_y$\,[mm]', '$\\varepsilon_\\mathrm{vm}$\,[\%]'),
# figsize=(6, 3), colorbar_padding=0.02, ncols=4)
# gif_org = iio.mimread(os.path.join(MODEL_FOLDER, "interp.gif"), memtest=False)
# iio.mimsave(os.path.join(MODEL_FOLDER, f"interp.mp4"), gif_org, fps=30)
####################
# Calculate metrics:
####################
print("Calculating metrics...")
# --- Sliced Wasserstein Distance ---
print("Calculating Sliced Wasserstein Distance...")
swd_values, swd_names = swd.calc_swd(
generator=my_gan.generator,
real_data=real_data_normalized,
save_folder=MODEL_FOLDER,
device=conf.device,
n_times=10,
torch_version=True,
)
swd_values, swd_names = swd.load_swd(os.path.join(MODEL_FOLDER, "swd_pytorch.csv"))
# --- Structural Similarity Index Measure ---
# print("Calculating Structural Similarity Index Measure...")
# ssim_values = ssim.calc_ssim(real_data=real_data, fake_data=fake_data, save_folder=MODEL_FOLDER)
# ssim_values = torch.load(os.path.join(MODEL_FOLDER, 'ssim.pt'))
# --- Multi-Scale Structural Similarity Index Measure ---
# print("Calculating Multi-Scale Structural Similarity Index Measure...")
# ms_ssim_values = ms_ssim.calc_ms_ssim(real_data=real_data, fake_data=fake_data, save_folder=MODEL_FOLDER)
# --- Geometry Score ---
print("Calculating Geometry Score...")
score, mrlt_real, mrlt_fake = geometry_score.calc_geom_score(
generator=my_gan.generator,
real_data=real_data_normalized,
save_folder=MODEL_FOLDER,
n_times=2,
i_max=50,
only_fake_mrlts=False,
device=conf.device,
)
##################################
# Combining SWDs of multiple GANs:
##################################
# base_folder_name = "EPOCHS100_BATCHS8_DISCDCGANDiscriminator_GENUpsampleGenerator_ACTrelu_UPMODEnearest_ND5_S1LAST_LOSSGANLoss_TYPEvanilla_LLOSS1.0_OPTDISCAdam_OPTGENAdam_"
# model_folders = [base_folder_name + str(i) for i in range(10)]
# model_folders = model_folders + [base_folder_name+ "EPSvonMises_" + str(i) for i in range(10)]
# model_folders = [os.path.join(MODEL_PATH, folder) for folder in model_folders]
# csv_files = [os.path.join(folder, 'swd_pytorch.csv') for folder in model_folders]
# model_numbers = [folder.split('_')[-1] for folder in model_folders]
# n_epochs = [os.path.split(folder)[-1].split('_')[0][len('EPOCHS'):] for folder in model_folders]
# additional_columns={'gan_type': ['uGAN']*10 + ['eGAN']*10,
# 'model_number': model_numbers, 'n_epochs': n_epochs}
# df = swd.save_swds(csv_files=csv_files, save_folder=MODEL_PATH, save_filename='SWDs_100',
# additional_columns=additional_columns)
#################################
# Combining GSs of multiple GANs:
#################################
# base_folder_name = "EPOCHS100_BATCHS8_DISCDCGANDiscriminator_GENUpsampleGenerator_ACTrelu_UPMODEnearest_ND5_S1LAST_LOSSGANLoss_TYPEvanilla_LLOSS1.0_OPTDISCAdam_OPTGENAdam_"
# model_folders = [base_folder_name + str(i) for i in range(10)]
# model_folders = model_folders + [base_folder_name+ "EPSvonMises_" + str(i) for i in range(11)]
# model_folders = [os.path.join(MODEL_PATH, folder) for folder in model_folders]
# csv_files = [os.path.join(folder, 'geometry_score.csv') for folder in model_folders]
# model_numbers = [folder.split('_')[-1] for folder in model_folders]
# n_epochs = [os.path.split(folder)[-1].split('_')[0][len('EPOCHS'):] for folder in model_folders]
# additional_columns={'gan_type': ['uGAN']*10 + ['eGAN']*10, 'model_number': model_numbers, 'n_epochs': n_epochs}
# df = geometry_score.save_geom_scores(csv_files=csv_files, save_folder=MODEL_PATH,
# save_filename='GSs_100',
# additional_columns=additional_columns)
base_folder_name = "_".join(MODEL_FOLDER.split("_")[:-1]) + "_"
model_folders = [base_folder_name + str(i) for i in range(1)]
model_numbers = [folder.split("_")[-1] for folder in model_folders]
n_epochs = [
os.path.split(folder)[-1].split("_")[0][len("EPOCHS") :] for folder in model_folders
]
additional_columns = {
"gan_type": ["uGAN"] * 1,
"model_number": model_numbers,
"n_epochs": n_epochs,
}
df = geometry_score.save_geom_scores(
csv_files=[os.path.join(MODEL_FOLDER, "geometry_score.csv")],
save_folder=MODEL_PATH,
save_filename="GSs",
additional_columns=additional_columns,
)
###############
# Plot metrics:
###############
print("Plotting training statistics...")
plt_m.plot_statistics(
[[mean_outputs_disc_real, mean_outputs_disc_fake], [mean_outputs_disc_fake_2]],
[["real", "fake"], ["fake_2"]],
save_folder=MODEL_FOLDER,
filename="outputs",
)
plt_m.plot_statistics(
[
[mean_losses_disc, mean_losses_gen],
],
[["mean disc loss", "mean gen loss"]],
save_folder=MODEL_FOLDER,
filename="losses",
)
print("Plotting Sliced Wasserstein Distance...")
swd_filename = "swd_pytorch"
plt_m.plot_swd_bar(
swd_values=swd_values,
names=swd_names,
save_folder=MODEL_FOLDER,
filename=swd_filename + "_Nodemaps_1",
)
print("Plotting Geometry Score...")
gan_names = {"uGAN": "$u$GAN", "eGAN": "$\epsilon$GAN", "real": "Real Data"}
gs_filename = "GSs"
plt_m.plot_geom_scores(
os.path.join(MODEL_PATH, gs_filename + ".csv"),
gan_names=gan_names,
save_filename=gs_filename + "_Nodemaps_1",
)
# print("Plotting Combined Sliced Wasserstein Distance...")
# swd_filename = "SWDs_100"
# plt_m.plot_swds(
# os.path.join(MODEL_FOLDER, swd_filename + ".csv"),
# save_filename=swd_filename + "_Nodemaps_1",
# )
# print("Plotting Combined Geometry Score...")
# gan_names = {"uGAN": "$u$GAN", "eGAN": "$\epsilon$GAN", "real": "Real Data"}
# gs_filename = "GSs_100_w_mrlt_real_no_eGAN10"
# plt_m.plot_geom_scores(
# os.path.join(MODEL_FOLDER, gs_filename + ".csv"),
# gan_names=gan_names,
# save_filename=gs_filename + "_Nodemaps_1",
# )