diff --git a/lessons/univariate_models.Rmd b/lessons/univariate_models.Rmd
index c70661e..cb8ef1e 100644
--- a/lessons/univariate_models.Rmd
+++ b/lessons/univariate_models.Rmd
@@ -66,7 +66,7 @@ These different goals of model building require different approaches and modes
of model evaluation.
Hypothesis testing is typically geared towards testing a small handful of carefully
crafted ***A PRIORI*** hypotheses.
-In this context they model is typically judged useful if it is statistically
+In this context the model is typically judged useful if it is statistically
significant.
However, many times though the investigator does not have a clear *_a priori_*
hypothesis [(see post at Small Pond Science)](http://smallpondscience.com/2013/06/04/pretending-you-planned-to-test-that-hypothesis-the-whole-time/)
@@ -94,14 +94,13 @@ re-frame their analyses as if they are confirmatory rather than exploratory.
And of course there is pressure during peer-review to only report on
statistics that are significant.
-You might be wondering why this is a big deal. The reason is that you will inevitably
-get good fitting models (high R^2) and statistically significant results (p < 0.05)
-if you keep adding variables to a model even if those variables by definition are
-independent of the response variable [(Freedman 1983)](http://amstat.tandfonline.com/doi/abs/10.1080/00031305.1983.10482729#.Ul17gVAkJPQ).
-
-The solution to Freedman's paradox is to approach model comparison as carefully
-and intentionally as possible with a small number of deliberately chosen models.
-Burnham and Anderson (2002, p19) advocate for:
+You might be wondering why this is a big deal. The reason is Freedman's paradox
+[(Freedman 1983)](http://amstat.tandfonline.com/doi/abs/10.1080/00031305.1983.10482729#.Ul17gVAkJPQ) which demonstrates that you will inevitably get good fitting models
+(high R^2) and statistically significant results (p < 0.05) if you keep adding
+variables to a model even if those variables by definition are independent of
+the response variable. The solution to Freedman's paradox is to approach model
+comparison as carefully and intentionally as possible with a small number of
+deliberately chosen models. Burnham and Anderson (2002, p19) advocate for:
... a conservative approach to the overall issue of *strategy* in the
@@ -219,7 +218,7 @@ intuition which will guide our modeling and interpretation of the statistics.
>A quick note on graphics. I will primarily use base graphics in this course but
increasingly the R community is moving towards using `ggplot` for graphics.
-`ggplot` is a really great set of tools for making bueatiful graphics but it can
+`ggplot` is a really great set of tools for making beautiful graphics but it can
be more difficult to understand exactly how it works and how to custumize
graphics. Therefore, I want to expose you to both methods of producing graphics
the simple and clunky base graphics and the elegent and shiny `ggplot` graphics.
@@ -263,13 +262,18 @@ ggplot(data = weeds) +
Technically this is the same graphic as produced by base but you can see that
the R code is a bit more cryptic.
-Let's break it down line by line: `ggplot(data = weeds) +` spawns a `ggplot` graphic and specifies that the data will be provided by the object `weeds`. Now we can simply refer to column names
-of `weeds` in the remainder of the plotting call.
+Let's break it down line by line: `ggplot(data = weeds) +` spawns a `ggplot`
+graphic and specifies that the data will be provided by the object `weeds`.
+Now we can simply refer to column names of `weeds` in the remainder of the
+plotting call.
-The next line: `geom_boxplot(mapping = aes(x = trt, y = fruit_mass_mg)) +` specifies the geometry of the graphic in this case a boxplot, there are many other that can be specified in `ggplot`. The geometry function requires a
-few arguments including how to map data on to the graphic using the argument
-`mapping`. The mapping is usually wrapped in the function `aes` which provides an aesthetically pleasing rendering of the data on the graphic, `aes` requires
-and `x` and `y` variables.
+The next line: `geom_boxplot(mapping = aes(x = trt, y = fruit_mass_mg)) +`
+specifies the geometry of the graphic in this case a boxplot, there are many
+other that can be specified in `ggplot`. The geometry function requires a few
+arguments including how to map data on to the graphic using the argument
+`mapping`. The mapping is usually wrapped in the function `aes` which provides
+an aesthetically pleasing rendering of the data on the graphic, `aes` requires
+and `x` and `y` variables.
The last line: `labs(x = 'Treatment', y = 'Fruit mass (mg)')` provides the axis
labels.
@@ -372,9 +376,8 @@ A few quick points about this `ggplot` call.
* rather than specify the mapping of the `x` and `y` for each `geom_*` we simply
specify them once when setting up the graphic in the first `ggplot()` call
-* Note the usage of `manual_color()` - this is generally note needed as
-`ggplot`'s default colors are usually pretty attractive. I'm not sure why the
-packages is showing 'blue' as 'purple'
+* Note the usage of `manual_color()` - this is generally not needed as
+`ggplot`'s default colors are usually pretty attractive.
##### Excercise
Modify the `ggplot` call so that the `x` and `y` axes are properly labeled.
@@ -450,7 +453,7 @@ There is the minimal intercept only model
$$\mathbf{y} = \beta_0 + \varepsilon$$
This model essentially just uses the mean of *y* as a predictor of *y*. This
may seem silly but this is essentially what you compare all more complex models
-against.
+against - it is our null model.
```{r null model}
null_mod <- lm(fruit_mass_mg ~ 1, data = weeds)
@@ -498,7 +501,8 @@ Let's take a closer look at the `trt_mod` which includes the main effect due to
treatment. Note that only one of the levels of treatment is provided as a
coefficient. In this case it is `unfertilized`. To better understand this you
need to consider how factor variables are included in regression models. A
-categorical variable is encoded in R into a set of orthogonal contrasts.
+categorical variable is encoded in R into a set of orthogonal contrasts (aka
+[dummy variables](https://ordination.okstate.edu/envvar.htm)).
```{r}
levels(weeds$trt)
@@ -513,9 +517,11 @@ factor as a set of orthogonal contrasts. This explains why the treatment variabl
only requires a single regression coefficient.
Sometimes we have factors that are ranked such as low, medium, high. In this
-case the variable is called **ordinal** as opposed to our **nomial** treatment
-variable. The contrasts of ordinal variables are not as simple to specify and
-typically a Helmert polynomial contrasts are used.
+case the variable is called **ordinal** as opposed to our **nominal** treatment
+variable which did not contain ranks.
+The contrasts of ordinal variables are not as simple to specify and typically a
+Helmert polynomial contrasts are used (if you want to know more and possibly a
+better solution see [Gullickson's 2020 blog post](https://aarongullickson.netlify.app/post/better-contrasts-for-ordinal-variables-in-r/))
Let's examine these models graphically.
@@ -530,15 +536,15 @@ abline(ht_mod)
```
-The first panel of this graphic doesn't quite look correct because the regression
-line is not intersecting the center of the boxplots which is what we would
-expect. This is because by default
-R assigns the first level of the treatment factor an x-value of 1 and the second level of the factor a value of 2. Therefore when the regression line is added to the
-plot it is plotting the y-intercept (which is the mean value of the fertilized
-group) off the graph to the left one unit. To correct this we have to
-build the graph from scratch a bit more carefully making sure that the fertilized
-group is plotted an an x-axis value of 0 so that the regression line intersects that
-groups properly.
+The first panel of this graphic doesn't quite look correct because the
+regression line is not intersecting the center of the boxplots which is what we
+would expect. This is because by default R assigns the first level of the
+treatment factor an x-value of 1 and the second level of the factor a value of
+2. Therefore when the regression line is added to the plot it is plotting the
+y-intercept (which is the mean value of the fertilized group) off the graph to
+the left one unit. To correct this we have to build the graph from scratch a bit
+more carefully making sure that the fertilized group is plotted an an x-axis
+value of 0 so that the regression line intersects that groups properly.
```{r}
par(mfrow=c(1,2))
diff --git a/lessons/univariate_models.html b/lessons/univariate_models.html
index e72dfe8..d3ca17c 100644
--- a/lessons/univariate_models.html
+++ b/lessons/univariate_models.html
@@ -30,7 +30,7 @@
!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"