-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
248 lines (219 loc) · 10.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
import layers
import connections
import trainers
import utils
import time
class Model(object):
def __init__(self, layers, connections, statistics, ordered_trainers=None):
self.layers = layers
for i in range(len(connections) - 1):
assert(connections[i].dim_t == connections[i + 1].dim_b)
self.connections = connections
self.statistics = statistics
# Always start with basic gradient trainer alone
self.trainers = [trainers.Gradient()] + (ordered_trainers or list())
self.err = [] # Track rmse across training
def activation(self, index, states):
"""
Get activation of the given layer
index: index (0, 1, ...) of layer to get activation for
states: current states of each layer
"""
if index == 0:
return self.connections[0].prop_down(states[1])
if index == len(self.layers) - 1:
return self.connections[-1].prop_up(states[-2])
return (self.connections[index].prop_down(states[index + 1])
+ self.connections[index - 1].prop_up(states[index - 1]))
def expectation(self, index, states):
return self.layers[index].expectation(self.activation(index, states))
def sample(self, index, states):
""" Returns expectation, sample tuple """
exp = self.expectation(index, states)
return exp, self.layers[index].sample_exp(exp)
def train(self, lr, epoch, batch_size, data, lr_schedule=trainers.lr_linear, checkpoint=None):
data = np.reshape(data, (-1, self.layers[0].size)) # Ensure input is 2d array
nbatches = int(np.ceil(data.shape[0] / float(batch_size)))
begin_time = time.time()
start = begin_time # Used to log time since last checkpoint
for e in range(epoch):
np.random.shuffle(data)
err = 0.0
epoch_lr = lr_schedule(lr, e, epoch) # Get lr for current epoch
for batch in range(nbatches):
stats = dict()
v_pos = data[batch * batch_size:(batch+1) * batch_size]
for statistic in self.statistics:
statistic(self, v_pos, stats)
examples = v_pos.shape[0]
batch_lr = epoch_lr / examples
for i, connection in enumerate(self.connections):
# Get first update
gradient = self.trainers[0].get_update(self, stats, i, batch_lr, e)
for trainer in self.trainers[1:]: # Run any additional updates (momentum etc.)
gradient += trainer.get_update(self, stats, i, batch_lr, e)
for trainer in self.trainers:
trainer.update_state(self, i, gradient)
connection.gradient_update(gradient)
dd = stats['data'] # Data dependent
md = stats['model'] # Model dependent
for i, layer in enumerate(self.layers):
gradient = layer.gradient(dd[i], md[i])
gradient = batch_lr * gradient
layer.gradient_update(gradient)
if checkpoint is not None and ((e + 1) % checkpoint) == 0:
if 'reconstruction' not in stats:
stats['reconstruction'] = self.reconstruct(v_pos)
err += np.sum((v_pos - stats['reconstruction']) ** 2)
if checkpoint is not None and ((e + 1) % checkpoint) == 0:
err = np.sqrt(err / data.size)
self.err.append(err)
print("Epoch {}: {} | {}".format(e+1,
time.time() - start,
err))
start = time.time()
print("Total time: {}".format(time.time() - begin_time))
def reconstruct(self, data):
return self.dream(data).next()
def dream(self, data, steps=1, known_mask=None, known_values=None):
"""
Generator that returns samples separated by #steps
Returns probabilities
"""
data = np.reshape(data, (-1, self.connections[0].dim_b)) # Ensure input is 2d array
states = trainers.initialize_states(self, data)
# Ensure known values are proper dimensions
if known_mask is not None and known_values is not None:
known_mask = np.reshape(known_mask, (1, self.connections[0].dim_b))
known_values = np.reshape(known_values, (1, self.connections[0].dim_b))
while True:
for s in range(steps):
# Up to hidden
for i in range(1, len(self.layers)):
_, states[i] = self.sample(i, states)
# Back down to visible
for i in range(len(self.layers)-1, -1, -1):
exp, states[i] = self.sample(i, states)
# Mask visible layer with known values
if known_mask is not None:
exp[:, known_mask] = known_values[known_mask]
states[0][:, known_mask] = known_values[known_mask]
yield exp
###############################
# Templates for common models #
###############################
class BinaryRBM(Model):
def __init__(self, num_v, num_h, model_stat=None, ordered_trainers=None):
l1 = layers.BinaryLayer(num_v)
l2 = layers.BinaryLayer(num_h)
c1 = connections.FullConnection(num_v, num_h)
if model_stat is None:
model_stat = trainers.CD_model()
stats = [trainers.CD_data(), model_stat]
Model.__init__(self, [l1, l2], [c1], stats, ordered_trainers)
class ShapeRBM(Model):
def __init__(self, num_v, num_h, patches, model_stat=None, data=None,
v_damping=0.3, w_init=0.1, double_up=False, double_down=False,
ordered_trainers=None):
if data is not None:
mean_v = v_damping + (1-2*v_damping)*np.mean(data, axis=0)
bias_v = np.log(mean_v / (1.0 - mean_v))
l1 = layers.BinaryLayer(num_v, initial_bias=bias_v)
else:
l1 = layers.BinaryLayer(num_v)
l2 = layers.BinaryLayer(num_h)
c1 = connections.ShapeBMConnection(num_v, num_h, patches, w_init=w_init,
double_down=double_down, double_up=double_up)
if model_stat is None:
model_stat = trainers.PCD_model()
stats = [trainers.CD_data(), model_stat]
Model.__init__(self, [l1, l2], [c1], stats, ordered_trainers)
class DBM3(Model):
""" Three layer DBM model - TODO"""
def __init__(self, num_v, num_h1, num_h2,
c1_type=None, c1_args=None,
c2_type=None, c2_args=None,
layer_type=layers.BinaryLayer,
MF_steps=10, PCD_steps=5,
ordered_trainers=None):
self.num_v = num_v
self.num_h1 = num_h1
self.num_h2 = num_h2
blayers = [layer_type(s) for s in [num_v, num_h1, num_h2]]
c1 = c1_type(num_v, num_h1, *c1_args)
c2 = c2_type(num_h1, num_h2, *c2_args)
stats = [trainers.MF_data(MF_steps), trainers.PCD_model(PCD_steps)]
Model.__init__(self, blayers, [c1, c2], stats, ordered_trainers)
def stack_rbm(self, rbml1, rbml2):
""" Combine parameters to into full dbm """
# Check that all of the dimensions match up
assert(rbml1.connections[0].num_b == self.connections[0].num_b)
assert(rbml1.connections[0].num_t == self.connections[0].num_t)
assert(rbml2.connections[0].num_b == self.connections[1].num_b)
assert(rbml2.connections[0].num_t == self.connections[1].num_t)
assert(rbml1.layers[0].size == self.layers[0].size)
assert(rbml1.layers[1].size == self.layers[1].size)
assert(rbml2.layers[0].size == self.layers[1].size)
assert(rbml2.layers[0].size == self.layers[2].size)
self.connections[0].W = rbml1.connections[0].W.copy()
self.connections[1].W = rbml2.connections[0].W.copy()
self.layers[0].bias = rbml1.layers[0].bias.copy()
self.layers[1].bias = rbml1.layers[1].bias + rbml2.layers[0].bias
self.layers[2].bias = rbml2.layers[1].bias.copy()
class ShapeBM(Model):
def __init__(self, num_v, num_h1, num_h2, patches, ordered_trainers=None):
self.num_v = num_v
self.num_h1 = num_h1
self.num_h2 = num_h2
self.patches = patches
blayers = [layers.BinaryLayer(s) for s in [num_v, num_h1, num_h2]]
c1 = connections.ShapeBMConnection(num_v, num_h1, patches)
c2 = connections.FullConnection(num_h1, num_h2)
stats = [trainers.MF_data(10), trainers.PCD_model(5)]
Model.__init__(self, blayers, [c1, c2], stats, ordered_trainers)
def pretrain(self, data,
epoch=[3000, 3000],
v_damping=[0.3, 1e-10],
w_init=[0.01, 0.1],
lr=[0.001, 0.002],
batch_size=64,
lr_schedule=trainers.lr_slow_start,
rbml1=None, rbml2=None,
rbml1_path=None, rbml2_path=None,
checkpoint=None):
if rbml1 is None:
rbml1 = ShapeRBM(self.num_v, self.num_h1, self.patches,
model_stat=trainers.CD_model(),
data=data,
v_damping=v_damping[0],
w_init=w_init[0],
double_up=True)
rbml1.train(lr=lr[0], epoch=epoch[0], batch_size=batch_size,
data=data, lr_schedule=lr_schedule,
checkpoint=checkpoint)
if rbml1_path:
utils.save_model(rbml1, rbml1_path)
self.rbml1 = rbml1
if rbml2 is None:
data_l2 = rbml1.expectation(1, [data, None])
rbml2 = ShapeRBM(self.num_h1, self.num_h2,
patches=[slice(None, None, None)],
model_stat=trainers.CD_model(),
data=data_l2,
v_damping=v_damping[1],
w_init=w_init[1],
double_down=True)
rbml2.train(lr=lr[1], epoch=epoch[1], batch_size=batch_size,
data=data_l2, lr_schedule=lr_schedule,
checkpoint=checkpoint)
if rbml2_path:
utils.save_model(rbml2, rbml2_path)
self.rbml2 = rbml2
# Combine parameters to full dbm
self.connections[0].W = rbml1.connections[0].W.copy()
self.connections[1].W = rbml2.connections[0].W.copy()
self.layers[0].bias = rbml1.layers[0].bias.copy()
self.layers[1].bias = rbml1.layers[1].bias + rbml2.layers[0].bias
self.layers[2].bias = rbml2.layers[1].bias.copy()
return